Disturbance observer-based finite-time coordinated control for spacecraft formation flying with event-triggered communication
This paper investigates a finite-time coordinated controller for spacecraft formation flying subject to external disturbances and limited communication resources. An event-triggered strategy is adopted to reduce the communication between disturbance observer and controller, between controller and ac...
Saved in:
Published in | Nonlinear dynamics Vol. 111; no. 15; pp. 14213 - 14230 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates a finite-time coordinated controller for spacecraft formation flying subject to external disturbances and limited communication resources. An event-triggered strategy is adopted to reduce the communication between disturbance observer and controller, between controller and actuator, and between neighboring spacecraft, simultaneously, which is more significant for coordinated control. To compensate for the external disturbances, a hyperbolic tangent function-based adaptive finite-time disturbance observer is established without the advanced knowledge of the upper bound of the derivative of the disturbance. The designed disturbance observer and controller are integrated through event-triggered strategy. The stabilities of the closed-loop system can be verified by the Lyapunov theorem without applying the separation principle. Simulation studies are provided to prove the effectiveness of the proposed control scheme. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-023-08587-4 |