Nonlinear ion acoustic solitary waves with dynamical behaviours in the relativistic plasmas

This work investigates the basic features of Nonlinear Ion Acoustic Solitary waves (NIASWs) and their dynamical behaviours in an unmagnetized relativistic collisionless plasma system via the Schamel Korteweg-de Vries (SKdV) equation. Such plasma is composed by the generalized distributed electrons,...

Full description

Saved in:
Bibliographic Details
Published inAstrophysics and space science Vol. 365; no. 5
Main Author Hafez, M. G.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This work investigates the basic features of Nonlinear Ion Acoustic Solitary waves (NIASWs) and their dynamical behaviours in an unmagnetized relativistic collisionless plasma system via the Schamel Korteweg-de Vries (SKdV) equation. Such plasma is composed by the generalized distributed electrons, Boltzmann distributed positrons and relativistic warm ions. The influences of plasma parameters on NIASWs and their dynamical behaviours are investigated by comparing 26−term expansion of relativistic Lorentz factor (RLF) with both of weakly (2−term expansion of RLF) and highly (3−term expansion of RLF) regimes. It is found that the 26−term expansion of RLF are significantly changed NIASWs instead of both weakly and highly relativistic regimes. Therefore, the theoretical results would be very useful for understanding the nature (amplitude, width, polarity, etc.) of wave dynamics not only in astrophysical and space environments but also in further laboratory studies, where the proposed plasma assumptions are existed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-640X
1572-946X
DOI:10.1007/s10509-020-03791-9