Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws
We present a model reduction formulation for parametrized nonlinear partial differential equations (PDEs) associated with steady hyperbolic and convection-dominated conservation laws. Our formulation builds on three ingredients: a discontinuous Galerkin (DG) method which provides stability for conse...
Saved in:
Published in | Advances in computational mathematics Vol. 45; no. 5-6; pp. 2287 - 2320 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present a model reduction formulation for parametrized nonlinear partial differential equations (PDEs) associated with steady hyperbolic and convection-dominated conservation laws. Our formulation builds on three ingredients: a discontinuous Galerkin (DG) method which provides stability for conservation laws, reduced basis (RB) spaces which provide low-dimensional approximations of the parametric solution manifold, and the empirical quadrature procedure (EQP) which provides hyperreduction of the Galerkin-projection-based reduced model. The hyperreduced system inherits the stability of the DG discretization: (i) energy stability for linear hyperbolic systems, (ii) symmetry and non-negativity for steady linear diffusion systems, and hence (iii) energy stability for linear convection-diffusion systems. In addition, the framework provides (a) a direct quantitative control of the solution error induced by the hyperreduction, (b) efficient and simple hyperreduction posed as a
ℓ
1
minimization problem, and (c) systematic identification of the reduced bases and the empirical quadrature rule by a greedy algorithm. We demonstrate the formulation for parametrized aerodynamics problems governed by the compressible Euler and Navier-Stokes equations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-019-09710-z |