Runtime Analysis for Self-adaptive Mutation Rates

We propose and analyze a self-adaptive version of the ( 1 , λ ) evolutionary algorithm in which the current mutation rate is encoded within the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for t...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 83; no. 4; pp. 1012 - 1053
Main Authors Doerr, Benjamin, Witt, Carsten, Yang, Jing
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose and analyze a self-adaptive version of the ( 1 , λ ) evolutionary algorithm in which the current mutation rate is encoded within the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of O ( n λ / log λ + n log n ) when λ is at least C ln n for some constant C > 0 . For all values of λ ≥ C ln n , this performance is asymptotically best possible among all λ -parallel mutation-based unbiased black-box algorithms. Our result rigorously proves for the first time that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. In particular, it gives asymptotically the same performance as the relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gießen, Witt, and Yang (Algorithmica 2019). On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-020-00726-2