On distributionally robust chance constrained programs with Wasserstein distance
This paper studies a distributionally robust chance constrained program (DRCCP) with Wasserstein ambiguity set, where the uncertain constraints should be satisfied with a probability at least a given threshold for all the probability distributions of the uncertain parameters within a chosen Wasserst...
Saved in:
Published in | Mathematical programming Vol. 186; no. 1-2; pp. 115 - 155 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper studies a distributionally robust chance constrained program (DRCCP) with Wasserstein ambiguity set, where the uncertain constraints should be satisfied with a probability at least a given threshold for all the probability distributions of the uncertain parameters within a chosen Wasserstein distance from an empirical distribution. In this work, we investigate equivalent reformulations and approximations of such problems. We first show that a DRCCP can be reformulated as a conditional value-at-risk constrained optimization problem, and thus admits tight inner and outer approximations. We also show that a DRCCP of bounded feasible region is mixed integer representable by introducing big-M coefficients and additional binary variables. For a DRCCP with pure binary decision variables, by exploring the submodular structure, we show that it admits a big-M free formulation, which can be solved by a branch and cut algorithm. Finally, we present a numerical study to illustrate the effectiveness of the proposed formulations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-019-01445-5 |