The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions

Let Ω be a bounded domain in R n with C 1 boundary and let u λ be a Dirichlet Laplace eigenfunction in Ω with eigenvalue λ . We show that the ( n - 1 ) -dimensional Hausdorff measure of the zero set of u λ does not exceed C ( Ω ) λ . This result is new even for the case of domains with C ∞ -smooth b...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 31; no. 5; pp. 1219 - 1244
Main Authors Logunov, A., Malinnikova, E., Nadirashvili, N., Nazarov, F.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let Ω be a bounded domain in R n with C 1 boundary and let u λ be a Dirichlet Laplace eigenfunction in Ω with eigenvalue λ . We show that the ( n - 1 ) -dimensional Hausdorff measure of the zero set of u λ does not exceed C ( Ω ) λ . This result is new even for the case of domains with C ∞ -smooth boundary.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-021-00581-5