View-independent representation with frame interpolation method for skeleton-based human action recognition

Human action recognition is an important branch of computer vision science. It is a challenging task based on skeletal data because of joints’ complex spatiotemporal information. In this work, we propose a method for action recognition, which consists of three parts: view-independent representation,...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 11; no. 12; pp. 2625 - 2636
Main Authors Jiang, Yingguo, Xu, Jun, Zhang, Tong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human action recognition is an important branch of computer vision science. It is a challenging task based on skeletal data because of joints’ complex spatiotemporal information. In this work, we propose a method for action recognition, which consists of three parts: view-independent representation, frame interpolation, and combined model. First, the action sequence becomes view-independent representations independent of the view. Second, when judgment conditions are met, differentiated frame interpolations are used to expand the temporal dimensional information. Then, a combined model is adopted to extract these representation features and classify actions. Experimental results on two multi-view benchmark datasets Northwestern-UCLA and NTU RGB+D demonstrate the effectiveness of our complete method. Although using only one type of action feature and a simple architecture combined model, our complete method still outperforms most of the referential state-of-the-art methods and has strong robustness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-020-01132-4