SCAR Marker Development for the Identification of Elite Germplasm of Moringa Oleifera Lam.-A Never Die Plant

Moringa oleifera Lam. (drumstick) belongs to the family Moringaceae that is originated from sub-Himalayan tracts of Northern India distributed worldwide in the tropics and sub-tropics. Immature pods and fresh leaves are widely used as vegetable and are rich source of minerals and vitamins. In the pr...

Full description

Saved in:
Bibliographic Details
Published inPlant molecular biology reporter Vol. 39; no. 4; pp. 850 - 861
Main Authors Ravi, Drisya, Siril, E. A., Nair, Bindu R.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Moringa oleifera Lam. (drumstick) belongs to the family Moringaceae that is originated from sub-Himalayan tracts of Northern India distributed worldwide in the tropics and sub-tropics. Immature pods and fresh leaves are widely used as vegetable and are rich source of minerals and vitamins. In the present work, we made an attempt to develop and use a set of RAPD-SCAR marker for the identification of superior germplasm of M. oleifera from the accessions collected from South India. Initially, 120 trees were surveyed based on total fruit yield, and single fruit weight from Karnataka, Kerala, and Tamil Nadu states of India; 23 plants had 50% higher fruit yield and single fruit weight than average and were selected as Candidate Plus Trees (CPTs). On the basis of morphological and biochemical analysis, CPT17 was selected as elite germplasm. Random amplified polymorphic DNA (RAPD) analysis of CPTs indicated 89.61% polymorphism among 23 CPTs. These markers could be used in marker-assisted selection and breeding programs in M. oleifera . Further, an attempt to develop a set of RAPD-SCAR marker for the identification of superior germplasm of M. oleifera was made. RAPD primer OPA-19 (CAAACGTCGG) revealed a unique band (1500-bp) in CPT17. The specific RAPD band was recovered from the gel, cloned, and sequenced. BLAST analysis of the CPT17 specific sequences revealed that no considerable similarity with known protein. Based on these unique characterized sequences, specific primers for CPT17 were designed. Specific amplification profile of this primer proved it as a SCAR marker (F2R2) for CPT17 genotype.
ISSN:0735-9640
1572-9818
DOI:10.1007/s11105-021-01300-y