A Review on Lipases: Sources, Assays, Immobilization Techniques on Nanomaterials and Applications

Lipase is a highly utilized enzyme that holds significant value in various biotechnological and industrial applications, such as the food, paper, and oleochemical sectors, as well as in pharmaceutical contexts. Nevertheless, the application of the substance is relatively challenging and costly due t...

Full description

Saved in:
Bibliographic Details
Published inBioNanoScience Vol. 14; no. 2; pp. 1780 - 1797
Main Authors Fahim, Yosri A., El-Khawaga, Ahmed M., Sallam, Reem M., Elsayed, Mohamed A., Assar, Mohamed Farag Ali
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lipase is a highly utilized enzyme that holds significant value in various biotechnological and industrial applications, such as the food, paper, and oleochemical sectors, as well as in pharmaceutical contexts. Nevertheless, the application of the substance is relatively challenging and costly due to its aqueous solubility and instability. The immobilization technique is frequently employed to enhance the enzymatic activity and stability of lipase, and this approach has demonstrated considerable potential. The performance of immobilized lipase on nanomaterials (NMs) is subject to various factors, including the immobilization mechanisms and the specific type of matrix employed. This review examines recent advancements, mechanisms, and effects of nanomaterials (NMs) on lipase immobilization and activity. We also discuss different methods for lipase activity determination. The potential for multiple applications of immobilized lipases has been taken into consideration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2191-1630
2191-1649
DOI:10.1007/s12668-024-01319-x