Deep convolutional BiLSTM fusion network for facial expression recognition

Deep learning algorithms have shown significant performance improvements for facial expression recognition (FER). Most deep learning-based methods, however, focus more attention on spatial appearance features for classification, discarding much useful temporal information. In this work, we present a...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 36; no. 3; pp. 499 - 508
Main Authors Liang, Dandan, Liang, Huagang, Yu, Zhenbo, Zhang, Yipu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deep learning algorithms have shown significant performance improvements for facial expression recognition (FER). Most deep learning-based methods, however, focus more attention on spatial appearance features for classification, discarding much useful temporal information. In this work, we present a novel framework that jointly learns spatial features and temporal dynamics for FER. Given the image sequence of an expression, spatial features are extracted from each frame using a deep network, while the temporal dynamics are modeled by a convolutional network, which takes a pair of consecutive frames as input. Finally, the framework accumulates clues from fused features by a BiLSTM network. In addition, the framework is end-to-end learnable, and thus temporal information can be adapted to complement spatial features. Experimental results on three benchmark databases, CK+, Oulu-CASIA and MMI, show that the proposed framework outperforms state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-2789
1432-2315
DOI:10.1007/s00371-019-01636-3