Effects of interocular grouping demands on binocular rivalry

Binocular rivalry (BR) is a visual phenomenon in which perception alternates between two non-fusible images presented to each eye. Transition periods between dominant and suppressed images are marked by mixed percepts, where participants report fragments of each image being dynamically perceived. In...

Full description

Saved in:
Bibliographic Details
Published inJournal of vision (Charlottesville, Va.) Vol. 23; no. 10; p. 15
Main Authors Mokri, Eric, da Silva Castanheira, Jason, Laldin, Sidrah, Landry, Mathieu, Mendola, Janine D.
Format Journal Article
LanguageEnglish
Published The Association for Research in Vision and Ophthalmology 01.09.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:Binocular rivalry (BR) is a visual phenomenon in which perception alternates between two non-fusible images presented to each eye. Transition periods between dominant and suppressed images are marked by mixed percepts, where participants report fragments of each image being dynamically perceived. Interestingly, BR remains robust even when typical images are subdivided and presented in complementary patches to each eye, a phenomenon termed interocular grouping (IOG). The objective of the present study was to determine if increasing grouping demand in the context of BR changes the perceptual experience of rivalry. In 48 subjects with normal vision, mean dominant and mixed percept durations were recorded for classic BR and IOG conditions with increasing grouping demands from two, four, and six patches. We found that, as grouping demands increased, the duration of mixed periods increased. Indeed, durations of dominant and mixed percepts, as well as percentage of time spent in dominant or mixed state, differed significantly across conditions. However, durations of global dominant percepts remained relatively stable and saturated at about 1.5 seconds, despite the exponential increase in possible mixed combinations. Evidence shows that this saturation followed a nonlinear trend. The data also indicate that grouping across the vertical meridian is slightly more stable than for the horizontal meridian. Finally, individual differences in speed of alternation identified during BR were maintained in all interocular grouping conditions. These results provide new information about binocular visual spatial integration and will be useful for future studies of the underlying neural substrates and models of binocular vision.Binocular rivalry (BR) is a visual phenomenon in which perception alternates between two non-fusible images presented to each eye. Transition periods between dominant and suppressed images are marked by mixed percepts, where participants report fragments of each image being dynamically perceived. Interestingly, BR remains robust even when typical images are subdivided and presented in complementary patches to each eye, a phenomenon termed interocular grouping (IOG). The objective of the present study was to determine if increasing grouping demand in the context of BR changes the perceptual experience of rivalry. In 48 subjects with normal vision, mean dominant and mixed percept durations were recorded for classic BR and IOG conditions with increasing grouping demands from two, four, and six patches. We found that, as grouping demands increased, the duration of mixed periods increased. Indeed, durations of dominant and mixed percepts, as well as percentage of time spent in dominant or mixed state, differed significantly across conditions. However, durations of global dominant percepts remained relatively stable and saturated at about 1.5 seconds, despite the exponential increase in possible mixed combinations. Evidence shows that this saturation followed a nonlinear trend. The data also indicate that grouping across the vertical meridian is slightly more stable than for the horizontal meridian. Finally, individual differences in speed of alternation identified during BR were maintained in all interocular grouping conditions. These results provide new information about binocular visual spatial integration and will be useful for future studies of the underlying neural substrates and models of binocular vision.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-7362
1534-7362
DOI:10.1167/jov.23.10.15