A hybrid mine blast algorithm for feature selection problems

Feature selection (FS) is the process of finding the least possible number of features that are able to describe a dataset in the same way as the original features. Feature selection is a crucial preprocessing step for data mining techniques as it improves the performance of the prediction process i...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 25; no. 1; pp. 517 - 534
Main Authors Alweshah, Mohammed, Alkhalaileh, Saleh, Albashish, Dheeb, Mafarja, Majdi, Bsoul, Qusay, Dorgham, Osama
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-020-05164-4

Cover

More Information
Summary:Feature selection (FS) is the process of finding the least possible number of features that are able to describe a dataset in the same way as the original features. Feature selection is a crucial preprocessing step for data mining techniques as it improves the performance of the prediction process in terms of speed and accuracy and also provides a better understanding of stored data. The success of the FS process depends on achieving a balance between two important factors, namely selecting the minimal number of features and maintaining the maximum accuracy in the results. In this paper, two methods are proposed to improve the FS process. Firstly, the mine blast algorithm (MBA) is introduced to optimize the FS process in the exploration phase. Secondly, the MBA is hybridized with simulated annealing as a local search in the exploitation phase to enhance the solutions located by the MBA. The proposed approaches (MBA and MBA–SA) are tested on 18 benchmark datasets from the UCI repository, and the comprehensive experimental results indicate that MBA–SA achieved good performance when compared with five approaches in the literature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-020-05164-4