Fabrication of Bismuth Absorber Arrays for NTD-Ge Hard X-ray Microcalorimeters
The high-spectral-resolution detection of hard X-rays (E > 20 keV) is a challenging and nearly unexplored area in space astrophysics. Traditionally hard X-ray detectors present moderate spectral resolutions, although few tens of eV one could open new frontiers in the study of nuclear processes an...
Saved in:
Published in | Journal of low temperature physics Vol. 200; no. 5-6; pp. 336 - 341 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The high-spectral-resolution detection of hard X-rays (E > 20 keV) is a challenging and nearly unexplored area in space astrophysics. Traditionally hard X-ray detectors present moderate spectral resolutions, although few tens of eV one could open new frontiers in the study of nuclear processes and high-temperature plasma dynamics in energetic processes. This can be achieved by using cryogenic microcalorimeters. Within a research activity aimed at developing arrays of neutron transmutation-doped germanium (NTD-Ge) microcalorimeters for the high-spectral-resolution detection (about 50 eV@60 keV) of hard X-rays (20 keV < E<100 keV), we developed an electroplating process to fabricate high-thickness (> 60 μm) bismuth absorber arrays. The adopted technological process and the study of related process parameters are discussed; preliminary results on produced arrays are given. |
---|---|
ISSN: | 0022-2291 1573-7357 |
DOI: | 10.1007/s10909-020-02475-6 |