An Optimized Byzantine Fault Tolerance Algorithm for Consortium Blockchain

According to different application scenarios of blockchain system, it is generally divided into public chain, private chain and consortium chain. Consortium chain is a typical multi-center blockchain, because it has better landing, it is supported by more and more enterprises and governments. This p...

Full description

Saved in:
Bibliographic Details
Published inPeer-to-peer networking and applications Vol. 14; no. 5; pp. 2826 - 2839
Main Authors Li, Yuxi, Qiao, Liang, Lv, Zhihan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract According to different application scenarios of blockchain system, it is generally divided into public chain, private chain and consortium chain. Consortium chain is a typical multi-center blockchain, because it has better landing, it is supported by more and more enterprises and governments. This paper analyzes the advantages and problems of Practical Byzantine Fault Tolerance (PBFT) algorithm for the application scenarios of the consortium chain. In order to be more suitable for consortium chains, this paper proposes a new optimized consensus algorithm based on PBFT. Aiming at the shortcomings of PBFT, such as the inability to dynamically join nodes, low multi-node consensus efficiency, and primary master node selection, our optimized algorithm has designed a hierarchical structure to increase scalability and improve consensus efficiency. The simulation results show that compared with PBFT and RAFT, our new consensus algorithm increases the data throughput while supporting more nodes, and effectively reducing the consensus delay and the number of communication times between nodes.
AbstractList According to different application scenarios of blockchain system, it is generally divided into public chain, private chain and consortium chain. Consortium chain is a typical multi-center blockchain, because it has better landing, it is supported by more and more enterprises and governments. This paper analyzes the advantages and problems of Practical Byzantine Fault Tolerance (PBFT) algorithm for the application scenarios of the consortium chain. In order to be more suitable for consortium chains, this paper proposes a new optimized consensus algorithm based on PBFT. Aiming at the shortcomings of PBFT, such as the inability to dynamically join nodes, low multi-node consensus efficiency, and primary master node selection, our optimized algorithm has designed a hierarchical structure to increase scalability and improve consensus efficiency. The simulation results show that compared with PBFT and RAFT, our new consensus algorithm increases the data throughput while supporting more nodes, and effectively reducing the consensus delay and the number of communication times between nodes.
Author Li, Yuxi
Qiao, Liang
Lv, Zhihan
Author_xml – sequence: 1
  givenname: Yuxi
  surname: Li
  fullname: Li, Yuxi
  organization: School of Data Science and Software Engineering, Qingdao University
– sequence: 2
  givenname: Liang
  surname: Qiao
  fullname: Qiao, Liang
  organization: School of Data Science and Software Engineering, Qingdao University
– sequence: 3
  givenname: Zhihan
  orcidid: 0000-0003-2525-3074
  surname: Lv
  fullname: Lv, Zhihan
  email: lvzhihan@gmail.com
  organization: School of Data Science and Software Engineering, Qingdao University
BookMark eNp9kE1PAjEQhhuDiYD-AU-beF6dtvtRjkDEj5BwwXNTui0Ud1tsuwf49a6u0cQDp5nDPPPOPCM0sM4qhG4x3GOA8iFgAoymQHAKGANN2QUa4gkt0iLLYfDbZ-QKjULYAxSY5mSIXqc2WR2iacxJVcnseBI2GquShWjrmKxdrbywUiXTeuu8ibsm0c4nc2eD89G0TTKrnXyXO2HsNbrUog7q5qeO0dvicT1_Tperp5f5dJlKiicxJRiIFISxSpEq05BpWVZM50wxWjBQJS2lUpsKNnkuSbYpMeAsw5NCa1ZhRegY3fV7D959tCpEvnett10kJ3lBipyw7rkxIv2U9C4ErzQ_eNMIf-QY-Jcz3jvjnTP-7YyzDmL_IGmiiMbZ6IWpz6O0R0OXY7fK_111hvoErUiCHg
CitedBy_id crossref_primary_10_1007_s11277_021_08762_z
crossref_primary_10_1049_stg2_12064
crossref_primary_10_1016_j_hcc_2023_100196
crossref_primary_10_1109_ACCESS_2022_3162214
crossref_primary_10_1007_s12083_022_01317_4
crossref_primary_10_1109_ACCESS_2022_3197758
crossref_primary_10_1007_s00366_021_01420_9
crossref_primary_10_1109_ACCESS_2022_3170477
crossref_primary_10_1002_nem_2300
crossref_primary_10_1109_TNSM_2022_3180357
crossref_primary_10_1007_s12083_024_01658_2
crossref_primary_10_3390_app13126911
crossref_primary_10_1080_15397734_2021_1996245
crossref_primary_10_23919_JSC_2022_0016
crossref_primary_10_3390_electronics12183801
crossref_primary_10_1007_s12083_022_01373_w
crossref_primary_10_1038_s41598_023_28856_x
crossref_primary_10_1038_s41598_024_68120_4
crossref_primary_10_1109_TITS_2024_3495991
crossref_primary_10_1155_2021_2030810
crossref_primary_10_1007_s12083_022_01407_3
crossref_primary_10_3390_s23156751
crossref_primary_10_4018_IJDCF_315615
crossref_primary_10_1007_s12083_024_01888_4
crossref_primary_10_1016_j_pmcj_2023_101830
crossref_primary_10_1049_blc2_12067
crossref_primary_10_1016_j_scs_2024_105620
crossref_primary_10_1007_s00366_021_01454_z
crossref_primary_10_1109_ACCESS_2023_3328539
crossref_primary_10_1016_j_ipm_2022_102884
crossref_primary_10_1080_17455030_2021_1938285
crossref_primary_10_1093_ijlct_ctae266
crossref_primary_10_1016_j_dajour_2024_100411
crossref_primary_10_3390_computers13010011
crossref_primary_10_1007_s11277_021_08759_8
crossref_primary_10_1016_j_buildenv_2025_112684
crossref_primary_10_1155_2022_2687445
crossref_primary_10_3390_app11209372
crossref_primary_10_4018_IJSWIS_333063
crossref_primary_10_3390_electronics11213501
crossref_primary_10_1109_JSEN_2024_3502619
crossref_primary_10_1007_s12083_023_01550_5
crossref_primary_10_26636_jtit_2022_161522
crossref_primary_10_1109_ACCESS_2023_3342079
crossref_primary_10_1155_2022_7208805
crossref_primary_10_1049_blc2_12030
crossref_primary_10_1016_j_iot_2024_101357
crossref_primary_10_3390_electronics13101942
crossref_primary_10_1007_s11227_023_05414_w
crossref_primary_10_4236_jcc_2022_109003
crossref_primary_10_1155_2022_6972647
crossref_primary_10_1007_s13369_024_09614_1
crossref_primary_10_1093_comjnl_bxae137
crossref_primary_10_34104_ijmms_024_014021
crossref_primary_10_1016_j_comcom_2025_108048
crossref_primary_10_3390_app12052534
crossref_primary_10_3390_su14095200
crossref_primary_10_3390_a16010034
crossref_primary_10_1109_JIOT_2024_3368448
crossref_primary_10_32604_cmc_2023_043476
crossref_primary_10_1007_s11042_024_19166_z
crossref_primary_10_1016_j_ins_2022_12_068
crossref_primary_10_1007_s00366_021_01455_y
crossref_primary_10_1145_3580392
crossref_primary_10_3934_mbe_2023447
crossref_primary_10_1155_2022_1935233
crossref_primary_10_1007_s00366_021_01433_4
crossref_primary_10_3390_electronics12092049
crossref_primary_10_1109_ACCESS_2023_3264011
crossref_primary_10_1007_s00500_021_05932_w
crossref_primary_10_1109_ACCESS_2023_3341361
crossref_primary_10_1002_cpe_8287
crossref_primary_10_1007_s00366_021_01450_3
crossref_primary_10_3390_electronics12245045
crossref_primary_10_1155_2022_9452342
crossref_primary_10_32604_cmc_2024_052708
crossref_primary_10_1108_IJICC_05_2022_0126
crossref_primary_10_1007_s12083_024_01830_8
crossref_primary_10_1080_15397734_2021_1943672
crossref_primary_10_1007_s12083_023_01566_x
crossref_primary_10_1155_2022_2580176
crossref_primary_10_3390_su162310552
Cites_doi 10.1145/571637.571640
10.1109/TCYB.2018.2823730
10.1109/ICEIEC.2019.8784495
10.1109/TNNLS.2019.2899936
10.1109/SRDS47363.2019.00023
10.1145/2976749.2978399
10.1109/BigDataCongress.2017.85
10.1007/978-3-030-23404-1_15
10.23919/JCC.2019.12.008
10.1109/COMST.2020.2969706
10.1109/TSP.2016.2614790
10.1007/978-3-319-48478-5
10.1109/SMC.2017.8123011
10.1145/3299869.3314116
10.1109/ICACCS.2017.8014672
10.1109/ISCID.2018.10136
10.1109/MSPEC.2017.8048838
10.1109/CyberC.2019.00041
10.1109/IPDPS47924.2020.00074
10.1109/CyberC.2019.00013
10.1109/TSMC.2019.2895471
10.1007/978-981-15-9129-7_24
10.1016/j.future.2017.09.023
10.1186/s40854-016-0034-9
10.1007/978-0-387-35568-9_18
10.1109/ICIICT1.2019.8741353
10.1109/SRDS.2017.36
10.1109/ICMIC.2018.8529940
10.1109/Cybermatics_2018.2018.00184
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2O
M2P
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s12083-021-01103-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-6450
EndPage 2839
ExternalDocumentID 10_1007_s12083_021_01103_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61902203
  funderid: https://doi.org/10.13039/501100001809
– fundername: Key Technology Research and Development Program of Shandong
  grantid: 2019JZZY020101
  funderid: https://doi.org/10.13039/100014103
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
06D
0R~
0VY
123
1N0
203
29O
29~
2JN
2JY
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
5VS
67Z
6NX
875
88I
8AO
8FE
8FG
8G5
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARCSS
AUKKA
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KOV
LLZTM
M0N
M2O
M2P
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P62
P9P
PQQKQ
PROAC
PT4
Q2X
QOS
R89
RIG
RLLFE
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TH9
TSG
TSK
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-2102ca288de2d4f04fc7d8f58e83680e737ceebd0b55c24b710144196ff8d1e23
IEDL.DBID U2A
ISSN 1936-6442
IngestDate Fri Jul 25 22:55:42 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Tue Jul 01 01:29:13 EDT 2025
Fri Feb 21 02:47:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Byzantine fault tolerance
Consortium blockchain
PBFT
Consensus algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2102ca288de2d4f04fc7d8f58e83680e737ceebd0b55c24b710144196ff8d1e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2525-3074
PQID 2562652861
PQPubID 54523
PageCount 14
ParticipantIDs proquest_journals_2562652861
crossref_primary_10_1007_s12083_021_01103_8
crossref_citationtrail_10_1007_s12083_021_01103_8
springer_journals_10_1007_s12083_021_01103_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Norwell
PublicationTitle Peer-to-peer networking and applications
PublicationTitleAbbrev Peer-to-Peer Netw. Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Mingxiao D, Xiaofeng M, Zhe Z, Xiangwei W, Qijun C (2017) A review on consensus algorithm of blockchain. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 2567–2572
GaoSYuTZhuJCaiWT-PBFT: An EigenTrust-based practical Byzantine fault tolerance consensus algorithmChina Commun2019161211112310.23919/JCC.2019.12.008
He L, Hou Z (2019) An improvement of consensus fault tolerant algorithm applied to alliance chain. In: 2019 IEEE 9th international conference on electronics information and emergency communication (ICEIEC). IEEE, pp 1–4
PeckMEBlockchain world-Do you need a blockchain? This chart will tell you if the technology can solve your problemIEEE Spectrum20175410386010.1109/MSPEC.2017.8048838
GramoliVFrom blockchain consensus back to byzantine consensusFuture Gener Comput Syst202010776076910.1016/j.future.2017.09.023
Zheng Z, Xie S, Dai H, Chen X, Wang H (2017) An overview of blockchain technology: Architecture, consensus, and future trends. In: 2017 IEEE international congress on big data (BigData congress). IEEE, pp 557–564
Jalalzai MM, Busch C (2018) Window based BFT blockchain consensus. In: 2018 IEEE international conference on Internet of Things (iThings) and IEEE green computing and communications (GreenCom) and IEEE Cyber, physical and social computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, pp 971–979
Sankar LS, Sindhu M, Sethumadhavan M (2017) Survey of consensus protocols on blockchain applications. In: 2017 4th international conference on advanced computing and communication systems (ICACCS). IEEE, pp 1–5
Lao L, Dai X, Xiao B, Guo S (2020) G-PBFT: a location-based and scalable consensus protocol for IOT-Blockchain applications. In: 2020 IEEE International parallel and distributed processing symposium (IPDPS). IEEE, pp 664–673
HuangDMaXZhangSPerformance analysis of the raft consensus algorithm for private blockchainsIEEE Trans Sys Man Cybern Sys201950117218110.1109/TSMC.2019.2895471
Zhang L, Li Q (2018) Research on consensus efficiency based on practical byzantine fault tolerance. In: 2018 10th International conference on modelling, identification and control (ICMIC). IEEE, pp 1–6
Sukhwani H, Martínez JM, Chang X, Trivedi KS, Rindos A (2017) Performance modeling of PBFT consensus process for permissioned blockchain network (hyperledger fabric). In: 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS). IEEE, pp 253–255
GuoYLiangCBlockchain application and outlook in the banking industryFinancial Innovation2016212410.1186/s40854-016-0034-9
Gueta GG, Abraham I, Grossman S, Malkhi D, Pinkas B, Reiter M, Seredinschi D, Tamir O, Tomescu A (2018) Sbft: a scalable decentralized trust infrastructure for blockchains (1804)
YangSDengBWangJLiHLuMCheYWeiXLoparoKAScalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neuronsIEEE Trans Neural Netw Learn Sys201931114816210.1109/TNNLS.2019.2899936
Zhang J, Rong Y, Cao J, Rong C, Bian J, Wu W (2019) DBFT: A byzantine fault tolerant protocol with graceful performance degradation. In: 2019 38th symposium on reliable distributed systems (SRDS). IEEE, pp 123–12309
Wang S (2019) Performance evaluation of hyperledger fabric with malicious behavior. In: International conference on blockchain. Springer, Cham, pp 211–219
KhosraviAKavianYSBroadcast gossip ratio consensus: Asynchronous distributed averaging in strongly connected networksIEEE Trans Signal Process2016651119129357301310.1109/TSP.2016.2614790
King S, Nadal S (2012) Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. Self-published paper, August, 19, 1
Wang X, WeiLi J, Chai J (2018) The research on the incentive method of consortium blockchain based on practical byzantine fault tolerant. In: 2018 11th international symposium on computational intelligence and design (ISCID), vol 2. IEEE, pp 154–156
Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system
MorabitoVBusiness innovation through blockchain2017ChamSpringer International Publishing10.1007/978-3-319-48478-5
Mohan C (2019) State of public and private blockchains: Myths and reality. In: Proceedings of the 2019 international conference on management of data, pp 404–411
Zhu S, Zhang Z, Chen L, Chen H, Wang Y (2020) A PBFT consensus scheme with reputation value voting based on dynamic clustering. In: International conference on security and privacy in digital economy. Springer, Singapore, pp 336–354
Li Y, Wang Z, Fan J, Zheng Y, Luo Y, Deng C, Ding J (2019) An extensible consensus algorithm based on PBFT. In: 2019 international conference on cyber-enabled distributed computing and knowledge discovery (CyberC). IEEE, pp 17–23
CrosbyMPattanayakPVermaSKalyanaramanVBlockchain technology: Beyond bitcoinApplied Innovation201626-1071
XiaoYZhangNLouWHouYTA survey of distributed consensus protocols for blockchain networksIEEE Commun Surv Tutor20202221432146510.1109/COMST.2020.2969706
CastroMLiskovBPractical Byzantine fault tolerance and proactive recoveryACM Trans Comput Sys (TOCS)200220439846110.1145/571637.571640
Wang H, Guo K (2019) Byzantine fault tolerant algorithm based on vote. In: 2019 international conference on cyber-enabled distributed computing and knowledge discovery (CyberC). IEEE, pp 190–196
YangSWangJDengBLiuCLiHFietkiewiczCLoparoKAReal-time neuromorphic system for large-scale conductance-based spiking neural networksIEEE Trans Cybern20184972490250310.1109/TCYB.2018.2823730
Buterin V (2014) A next-generation smart contract and decentralized application platform. White Paper 3(37)
Pahlajani S, Kshirsagar A, Pachghare V (2019) Survey on private blockchain consensus algorithms. In: 2019 1st International conference on innovations in information and communication technology (ICIICT). IEEE, pp 1–6
Jakobsson M, Juels A (1999) Proofs of work and bread pudding protocols. In: Secure information networks. Springer, Boston, pp 258–272
Larimer D (2017) Delegated proof-of-stake consensus. bitshares.org. https://bitshares.org/technology/delegating-proof-of-stake-consensushttps://bitshares.org/technology/delegating-proof-of-stake-consensus. Accessed March 28th, 2017
Miller A, Xia Y, Croman K, Shi E, Song D (2016) The honey badger of BFT protocols. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp 31–42
Okusanya O (2019) Consensus in Distributed Systems: RAFT vs CRDTs. https://repository.stcloudstate.edu/csitetds/29
1103_CR9
1103_CR7
1103_CR3
1103_CR1
S Yang (1103_CR4) 2019; 31
S Gao (1103_CR34) 2019; 16
Y Xiao (1103_CR12) 2020; 22
1103_CR18
1103_CR17
1103_CR16
1103_CR15
Y Guo (1103_CR10) 2016; 2
1103_CR14
1103_CR36
M Crosby (1103_CR8) 2016; 2
1103_CR13
1103_CR35
1103_CR33
1103_CR32
1103_CR31
1103_CR30
ME Peck (1103_CR2) 2017; 54
M Castro (1103_CR20) 2002; 20
S Yang (1103_CR5) 2018; 49
1103_CR29
D Huang (1103_CR19) 2019; 50
1103_CR28
1103_CR27
1103_CR26
1103_CR25
1103_CR24
1103_CR23
1103_CR22
V Gramoli (1103_CR11) 2020; 107
A Khosravi (1103_CR21) 2016; 65
V Morabito (1103_CR6) 2017
References_xml – reference: Zheng Z, Xie S, Dai H, Chen X, Wang H (2017) An overview of blockchain technology: Architecture, consensus, and future trends. In: 2017 IEEE international congress on big data (BigData congress). IEEE, pp 557–564
– reference: Larimer D (2017) Delegated proof-of-stake consensus. bitshares.org. https://bitshares.org/technology/delegating-proof-of-stake-consensushttps://bitshares.org/technology/delegating-proof-of-stake-consensus. Accessed March 28th, 2017
– reference: Sukhwani H, Martínez JM, Chang X, Trivedi KS, Rindos A (2017) Performance modeling of PBFT consensus process for permissioned blockchain network (hyperledger fabric). In: 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS). IEEE, pp 253–255
– reference: Pahlajani S, Kshirsagar A, Pachghare V (2019) Survey on private blockchain consensus algorithms. In: 2019 1st International conference on innovations in information and communication technology (ICIICT). IEEE, pp 1–6
– reference: Miller A, Xia Y, Croman K, Shi E, Song D (2016) The honey badger of BFT protocols. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp 31–42
– reference: CrosbyMPattanayakPVermaSKalyanaramanVBlockchain technology: Beyond bitcoinApplied Innovation201626-1071
– reference: Wang H, Guo K (2019) Byzantine fault tolerant algorithm based on vote. In: 2019 international conference on cyber-enabled distributed computing and knowledge discovery (CyberC). IEEE, pp 190–196
– reference: Li Y, Wang Z, Fan J, Zheng Y, Luo Y, Deng C, Ding J (2019) An extensible consensus algorithm based on PBFT. In: 2019 international conference on cyber-enabled distributed computing and knowledge discovery (CyberC). IEEE, pp 17–23
– reference: YangSWangJDengBLiuCLiHFietkiewiczCLoparoKAReal-time neuromorphic system for large-scale conductance-based spiking neural networksIEEE Trans Cybern20184972490250310.1109/TCYB.2018.2823730
– reference: KhosraviAKavianYSBroadcast gossip ratio consensus: Asynchronous distributed averaging in strongly connected networksIEEE Trans Signal Process2016651119129357301310.1109/TSP.2016.2614790
– reference: Lao L, Dai X, Xiao B, Guo S (2020) G-PBFT: a location-based and scalable consensus protocol for IOT-Blockchain applications. In: 2020 IEEE International parallel and distributed processing symposium (IPDPS). IEEE, pp 664–673
– reference: Mingxiao D, Xiaofeng M, Zhe Z, Xiangwei W, Qijun C (2017) A review on consensus algorithm of blockchain. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 2567–2572
– reference: Gueta GG, Abraham I, Grossman S, Malkhi D, Pinkas B, Reiter M, Seredinschi D, Tamir O, Tomescu A (2018) Sbft: a scalable decentralized trust infrastructure for blockchains (1804)
– reference: Zhu S, Zhang Z, Chen L, Chen H, Wang Y (2020) A PBFT consensus scheme with reputation value voting based on dynamic clustering. In: International conference on security and privacy in digital economy. Springer, Singapore, pp 336–354
– reference: Sankar LS, Sindhu M, Sethumadhavan M (2017) Survey of consensus protocols on blockchain applications. In: 2017 4th international conference on advanced computing and communication systems (ICACCS). IEEE, pp 1–5
– reference: Wang X, WeiLi J, Chai J (2018) The research on the incentive method of consortium blockchain based on practical byzantine fault tolerant. In: 2018 11th international symposium on computational intelligence and design (ISCID), vol 2. IEEE, pp 154–156
– reference: Jakobsson M, Juels A (1999) Proofs of work and bread pudding protocols. In: Secure information networks. Springer, Boston, pp 258–272
– reference: CastroMLiskovBPractical Byzantine fault tolerance and proactive recoveryACM Trans Comput Sys (TOCS)200220439846110.1145/571637.571640
– reference: Buterin V (2014) A next-generation smart contract and decentralized application platform. White Paper 3(37)
– reference: Mohan C (2019) State of public and private blockchains: Myths and reality. In: Proceedings of the 2019 international conference on management of data, pp 404–411
– reference: Wang S (2019) Performance evaluation of hyperledger fabric with malicious behavior. In: International conference on blockchain. Springer, Cham, pp 211–219
– reference: Jalalzai MM, Busch C (2018) Window based BFT blockchain consensus. In: 2018 IEEE international conference on Internet of Things (iThings) and IEEE green computing and communications (GreenCom) and IEEE Cyber, physical and social computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, pp 971–979
– reference: XiaoYZhangNLouWHouYTA survey of distributed consensus protocols for blockchain networksIEEE Commun Surv Tutor20202221432146510.1109/COMST.2020.2969706
– reference: GaoSYuTZhuJCaiWT-PBFT: An EigenTrust-based practical Byzantine fault tolerance consensus algorithmChina Commun2019161211112310.23919/JCC.2019.12.008
– reference: Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system
– reference: Zhang L, Li Q (2018) Research on consensus efficiency based on practical byzantine fault tolerance. In: 2018 10th International conference on modelling, identification and control (ICMIC). IEEE, pp 1–6
– reference: Okusanya O (2019) Consensus in Distributed Systems: RAFT vs CRDTs. https://repository.stcloudstate.edu/csitetds/29
– reference: HuangDMaXZhangSPerformance analysis of the raft consensus algorithm for private blockchainsIEEE Trans Sys Man Cybern Sys201950117218110.1109/TSMC.2019.2895471
– reference: YangSDengBWangJLiHLuMCheYWeiXLoparoKAScalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neuronsIEEE Trans Neural Netw Learn Sys201931114816210.1109/TNNLS.2019.2899936
– reference: King S, Nadal S (2012) Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. Self-published paper, August, 19, 1
– reference: GuoYLiangCBlockchain application and outlook in the banking industryFinancial Innovation2016212410.1186/s40854-016-0034-9
– reference: PeckMEBlockchain world-Do you need a blockchain? This chart will tell you if the technology can solve your problemIEEE Spectrum20175410386010.1109/MSPEC.2017.8048838
– reference: GramoliVFrom blockchain consensus back to byzantine consensusFuture Gener Comput Syst202010776076910.1016/j.future.2017.09.023
– reference: He L, Hou Z (2019) An improvement of consensus fault tolerant algorithm applied to alliance chain. In: 2019 IEEE 9th international conference on electronics information and emergency communication (ICEIEC). IEEE, pp 1–4
– reference: Zhang J, Rong Y, Cao J, Rong C, Bian J, Wu W (2019) DBFT: A byzantine fault tolerant protocol with graceful performance degradation. In: 2019 38th symposium on reliable distributed systems (SRDS). IEEE, pp 123–12309
– reference: MorabitoVBusiness innovation through blockchain2017ChamSpringer International Publishing10.1007/978-3-319-48478-5
– volume: 2
  start-page: 71
  issue: 6-10
  year: 2016
  ident: 1103_CR8
  publication-title: Applied Innovation
– volume: 20
  start-page: 398
  issue: 4
  year: 2002
  ident: 1103_CR20
  publication-title: ACM Trans Comput Sys (TOCS)
  doi: 10.1145/571637.571640
– volume: 49
  start-page: 2490
  issue: 7
  year: 2018
  ident: 1103_CR5
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2823730
– ident: 1103_CR26
  doi: 10.1109/ICEIEC.2019.8784495
– ident: 1103_CR1
– volume: 31
  start-page: 148
  issue: 1
  year: 2019
  ident: 1103_CR4
  publication-title: IEEE Trans Neural Netw Learn Sys
  doi: 10.1109/TNNLS.2019.2899936
– ident: 1103_CR32
  doi: 10.1109/SRDS47363.2019.00023
– ident: 1103_CR7
– ident: 1103_CR29
  doi: 10.1145/2976749.2978399
– ident: 1103_CR3
  doi: 10.1109/BigDataCongress.2017.85
– ident: 1103_CR24
  doi: 10.1007/978-3-030-23404-1_15
– volume: 16
  start-page: 111
  issue: 12
  year: 2019
  ident: 1103_CR34
  publication-title: China Commun
  doi: 10.23919/JCC.2019.12.008
– volume: 22
  start-page: 1432
  issue: 2
  year: 2020
  ident: 1103_CR12
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2020.2969706
– volume: 65
  start-page: 119
  issue: 1
  year: 2016
  ident: 1103_CR21
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2016.2614790
– volume-title: Business innovation through blockchain
  year: 2017
  ident: 1103_CR6
  doi: 10.1007/978-3-319-48478-5
– ident: 1103_CR18
  doi: 10.1109/SMC.2017.8123011
– ident: 1103_CR15
– ident: 1103_CR30
– ident: 1103_CR9
  doi: 10.1145/3299869.3314116
– ident: 1103_CR17
  doi: 10.1109/ICACCS.2017.8014672
– ident: 1103_CR36
– ident: 1103_CR25
  doi: 10.1109/ISCID.2018.10136
– volume: 54
  start-page: 38
  issue: 10
  year: 2017
  ident: 1103_CR2
  publication-title: IEEE Spectrum
  doi: 10.1109/MSPEC.2017.8048838
– ident: 1103_CR27
  doi: 10.1109/CyberC.2019.00041
– ident: 1103_CR35
  doi: 10.1109/IPDPS47924.2020.00074
– ident: 1103_CR31
  doi: 10.1109/CyberC.2019.00013
– volume: 50
  start-page: 172
  issue: 1
  year: 2019
  ident: 1103_CR19
  publication-title: IEEE Trans Sys Man Cybern Sys
  doi: 10.1109/TSMC.2019.2895471
– ident: 1103_CR28
  doi: 10.1007/978-981-15-9129-7_24
– volume: 107
  start-page: 760
  year: 2020
  ident: 1103_CR11
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2017.09.023
– volume: 2
  start-page: 24
  issue: 1
  year: 2016
  ident: 1103_CR10
  publication-title: Financial Innovation
  doi: 10.1186/s40854-016-0034-9
– ident: 1103_CR14
  doi: 10.1007/978-0-387-35568-9_18
– ident: 1103_CR16
– ident: 1103_CR13
  doi: 10.1109/ICIICT1.2019.8741353
– ident: 1103_CR22
  doi: 10.1109/SRDS.2017.36
– ident: 1103_CR23
  doi: 10.1109/ICMIC.2018.8529940
– ident: 1103_CR33
  doi: 10.1109/Cybermatics_2018.2018.00184
SSID ssj0061352
Score 2.534615
Snippet According to different application scenarios of blockchain system, it is generally divided into public chain, private chain and consortium chain. Consortium...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2826
SubjectTerms Algorithms
Blockchain
Communications Engineering
Computer Communication Networks
Consortia
Cryptography
Engineering
Fault tolerance
Information Systems and Communication Service
Networks
Nodes
Signal,Image and Speech Processing
Special Issue on Blockchain for Peer-to-Peer Computing
Structural hierarchy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAfIpCQR7YwCJ14uSYUIuoUCUKQiCxRU5sQ0WaFkgH-us5pw4BJJidWMpdfO-d7btHyJFIpYBQogeA-yxQUrAEuGZgMF56fgQmtIXC18Pw6iEYPIpHt-H27q5VVjGxDNRqkto98lOEZh4KDmHnfPrKrGqUPV11EhrLpIkhGDD5avYuh7d3VSxGrCo1d5ClhAyRn7uymUXxHEf6wewVBYuBPoOf0FTzzV9HpCXy9NfJmqOMtLvw8QZZ0vkmWf3WSHCLDLo5vcHFPx7NtaK9j7m0AhCa9uUsK-j9JNNWP0PTbvaE31Q8jylyVWrFOpF9j2Zj2kNMe0mf5SjfJg_9y_uLK-ZUEliKy6dgNmdLJQdQmqvAeIFJIwVGgAY_BE9HfoRAmCgvESLlQRJ1yiTqLDQGVEdzf4c08kmudwk1CY4LrYyGKEi8snHNWWKzFBl4hssW6VQGilPXQtwqWWRx3fzYGjVGo8alUWNokeOvd6aLBhr_Pt2u7B67xfQe165vkZPKF_Xw37Pt_T_bPlnhpfvtjbE2aRRvM32AFKNIDt1_9AkaMMrR
  priority: 102
  providerName: ProQuest
Title An Optimized Byzantine Fault Tolerance Algorithm for Consortium Blockchain
URI https://link.springer.com/article/10.1007/s12083-021-01103-8
https://www.proquest.com/docview/2562652861
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWGBAPEV5VB7YwFLqxMkxpqgPgSgItRJMkZPYUNGmqKQD_HrOIaGAAIkpgx0P9_q-k313AEcyURJ9RRpA4XIvVZLHKDRHQ_HScQM0vi0Uvuz53YF3fitvy6Kw5-q1e3UlWUTqebGbILrA7ZMCi1kux0VYljZ3JyseiLCKv4RPxZwdYiY-J7QXZanMz2d8haM5x_x2LVqgTXsd1kqayMJ3vW7Ags42YfVT88AtOA8zdkUOPx6-6pQ1X16VHfqgWVvNRjnrT0bazszQLBzdT6bD_GHMiJ8yO6CTGPdwNmZNwrHH5EENs20YtFv9sy4vJyPwhFwm5zZPS5RATLVIPeN4JglSNBI1uj46OnADAr84dWIpE-HFQaNInE59YzBtaOHuwFI2yfQuMBPTutSp0Rh4sVM0qzmNbWaiPMcIVYNGJaAoKduG2-kVo2je8NgKNSKhRoVQI6zB8cc_T-9NM_7cfVDJPSod6DkiJiZ8KdBv1OCk0sV8-ffT9v63fR9WRGEO9tXYASzl05k-JJqRx3VYxHanDsth5-6iRd9mq3d9Uy9s7Q2yq8pK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nc9MwEN3plAP0wFDaTgOl6EBPoMGRLXtzYDppIaSfXNKZ3lzZkkiGxCnUmU77o_iN3XVsQpmht54l6_C02n1rafcBvNO50Rgb2gFUoYys0TJD5SR68pdBmKCPuVD45DTun0WH5_p8CX43tTD8rLLxiZWjttOc_5F_pNCsYq0wbu9e_pSsGsW3q42ExtwsjtzNNaVsV58OPtP-7ijV-zLY78taVUDmZG6l5BwnNwrROmUjH0Q-Tyx6jQ7DGAOXhAkFjswGmda5irKkXSUdndh7tG3HjQ7I5T-JwrDDJwp7XxvPT5GxUvghThRL4hmqLtKZl-opIjuSH0RwxA0l3g-EC3b7z4VsFed6L-B5TVBFd25Rq7Dkipew8lfbwjU47BbiG7mayejWWbF3c2tYbsKJnpmNSzGYjh2rdTjRHX8nBMvhRBAzFiwNSlx_NJuIPYqgP_KhGRXrcPYo6G3AcjEt3CYIn9G4dtY7TKIsqNrkdDLOiUwUeGVa0G4ASvO6YTnrZozTRatlBjUlUNMK1BRb8P7PN5fzdh0Pzt5qcE_ro3uVLgytBR-avVgM_3-1Vw-v9hae9gcnx-nxwenRa3imKlPgt2pbsFz-mrk3RG7KbLuyKAEXj23Cdzz0Bio
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbQkBAcEE8xGJADnCCiS5s2OyC0ARPPgRBI3EraJDCxdTw6Ifhp_DqcrmWABDfOaXNwXH-fG9sfwBqPJRe-xBMQzKWekpxGgmkqDMZLxw2E8W2j8GnLP7jyjq759Qi8F70wtqyyiIlZoFa92P4j30JoZj5nwq9umbws4nyvufPwSK2ClL1pLeQ0Bi5yrF9fMH173j7cw7NeZ6y5f7l7QHOFARqj66XU5juxZEIozZRnHM_EgRKGCy1cXzg6cAMEkUg5Eecx86KgmiUgNd8YoaraDj3A8D8aYFbklGC0sd86vyhwAHEy0_tBhuRTZB0sb9kZNO4xpD7UlkdY_HWp-A6LQ67743o2Q73mFEzmdJXUB_41DSM6mYGJL0MMZ-GonpAzDDzd9ptWpPH6Jq34hCZN2e-k5LLX0Va7Q5N65xZtmN51CfJkYoVCkfm3-13SQDy9j-9kO5mDq3-x3zyUkl6iF4CYCNe5VkaLwIucbGhOLbIZkvQcw2QZqoWBwjgfX25VNDrhcPCyNWqIRg0zo4aiDBuf7zwMhnf8-XSlsHuYf8jP4dDtyrBZnMVw-ffdFv_ebRXG0H3Dk8PW8RKMs8wTbOFaBUrpU18vI9NJo5XcpQjc_LcXfwADZgu8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Byzantine+Fault+Tolerance+Algorithm+for+Consortium+Blockchain&rft.jtitle=Peer-to-peer+networking+and+applications&rft.au=Li%2C+Yuxi&rft.au=Qiao%2C+Liang&rft.au=Lv%2C+Zhihan&rft.date=2021-09-01&rft.pub=Springer+US&rft.issn=1936-6442&rft.eissn=1936-6450&rft.volume=14&rft.issue=5&rft.spage=2826&rft.epage=2839&rft_id=info:doi/10.1007%2Fs12083-021-01103-8&rft.externalDocID=10_1007_s12083_021_01103_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-6442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-6442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-6442&client=summon