An Optimized Byzantine Fault Tolerance Algorithm for Consortium Blockchain

According to different application scenarios of blockchain system, it is generally divided into public chain, private chain and consortium chain. Consortium chain is a typical multi-center blockchain, because it has better landing, it is supported by more and more enterprises and governments. This p...

Full description

Saved in:
Bibliographic Details
Published inPeer-to-peer networking and applications Vol. 14; no. 5; pp. 2826 - 2839
Main Authors Li, Yuxi, Qiao, Liang, Lv, Zhihan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:According to different application scenarios of blockchain system, it is generally divided into public chain, private chain and consortium chain. Consortium chain is a typical multi-center blockchain, because it has better landing, it is supported by more and more enterprises and governments. This paper analyzes the advantages and problems of Practical Byzantine Fault Tolerance (PBFT) algorithm for the application scenarios of the consortium chain. In order to be more suitable for consortium chains, this paper proposes a new optimized consensus algorithm based on PBFT. Aiming at the shortcomings of PBFT, such as the inability to dynamically join nodes, low multi-node consensus efficiency, and primary master node selection, our optimized algorithm has designed a hierarchical structure to increase scalability and improve consensus efficiency. The simulation results show that compared with PBFT and RAFT, our new consensus algorithm increases the data throughput while supporting more nodes, and effectively reducing the consensus delay and the number of communication times between nodes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1936-6442
1936-6450
DOI:10.1007/s12083-021-01103-8