Complementary models for audio-visual speech classification

A novel scheme for disambiguating conflicting classification results in Audio-Visual Speech Recognition applications is proposed in this paper. The classification scheme can be implemented with both generative and discriminative models and can be used with different input modalities, viz. only audio...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of speech technology Vol. 25; no. 1; pp. 231 - 249
Main Authors Sad, Gonzalo D., Terissi, Lucas D., Gómez, Juan C.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel scheme for disambiguating conflicting classification results in Audio-Visual Speech Recognition applications is proposed in this paper. The classification scheme can be implemented with both generative and discriminative models and can be used with different input modalities, viz. only audio, only visual, and audio visual information. The proposed scheme consists of the cascade connection of a standard classifier, trained with instances of each particular class, followed by a complementary model which is trained with instances of all the remaining classes. The performance of the proposed recognition system is evaluated on three publicly available audio-visual datasets, and using a generative model, namely a Hidden Markov model, and three discriminative techniques, viz. random forests, support vector machines, and adaptive boosting. The experimental results are promising in the sense that for the three datasets, the different models, and the different input modalities, improvements in the recognition rates are achieved in comparison to other methods reported in the literature over the same datasets.
ISSN:1381-2416
1572-8110
DOI:10.1007/s10772-021-09944-7