Development of AZ91/SiC surface composite by FSP: effect of vibration and process parameters on microstructure and mechanical characteristics

A surface composite layer enhances the mechanical characteristics of a surface while retaining the properties of the base material. Friction stir processing (FSP) is a method for forming surface metal matrix composites (SMMCs) that reinforce a surface with particles. In the current study, a new meth...

Full description

Saved in:
Bibliographic Details
Published inAdvances in manufacturing Vol. 8; no. 1; pp. 82 - 96
Main Authors Bagheri, Behrouz, Abbasi, Mahmoud
Format Journal Article
LanguageEnglish
Published Shanghai Shanghai University 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A surface composite layer enhances the mechanical characteristics of a surface while retaining the properties of the base material. Friction stir processing (FSP) is a method for forming surface metal matrix composites (SMMCs) that reinforce a surface with particles. In the current study, a new method entitled friction stir vibration processing (FSVP) was applied to form SMMCs on the surface of AZ91 magnesium alloy with SiC particles as the reinforcing particles. Contrary to FSP, in FSVP, the workpiece was vibrated normal to the processing line while the tool rotated and traversed. The microstructure and mechanical properties of friction stir (FS) and friction stir vibration (FSV) processed specimens were evaluated. Additionally, the effects of vibration frequency and process parameters on different characteristics of FS and FSV processed specimens were studied. The results showed that the stir zone grains for FSV processed specimens were finer than those for FS processed specimens, and the second phase particles (SiC particles) had a more homogenous distribution in the former specimens than in the latter specimens. This was related to the effect of workpiece vibration during FSVP, which increased the material deformation and led to enhanced dynamic recrystallization and the breakdown of agglomerated SiC particles. The results indicated that the stir zone grain size decreased, and the distribution homogeneity of the SiC particles increased as vibration frequency increased. It was also observed that the stir zone grain size increased, and the mechanical properties of the processed specimens decreased as tool rotation speed increased.
ISSN:2095-3127
2195-3597
DOI:10.1007/s40436-019-00288-9