ErfReLU: adaptive activation function for deep neural network

Recent research has found that the activation function (AF) plays a significant role in introducing non-linearity to enhance the performance of deep learning networks. Researchers recently started developing activation functions that can be trained throughout the learning process, known as trainable...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 27; no. 2
Main Authors Rajanand, Ashish, Singh, Pradeep
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent research has found that the activation function (AF) plays a significant role in introducing non-linearity to enhance the performance of deep learning networks. Researchers recently started developing activation functions that can be trained throughout the learning process, known as trainable, or adaptive activation functions (AAF). Research on AAF that enhances the outcomes is still in its early stages. In this paper, a novel activation function ‘ErfReLU’ has been developed based on the erf function and ReLU. This function leverages the advantages of both the Rectified Linear Unit (ReLU) and the error function (erf). A comprehensive overview of activation functions like Sigmoid, ReLU, Tanh, and their properties have been briefly explained. Adaptive activation functions like Tanhsoft1, Tanhsoft2, Tanhsoft3, TanhLU, SAAF, ErfAct, Pserf, Smish, and Serf is also presented. Lastly, comparative performance analysis of 9 trainable activation functions namely Tanhsoft1, Tanhsoft2, Tanhsoft3, TanhLU, SAAF, ErfAct, Pserf, Smish, and Serf with the proposed one has been performed. These activation functions are used in MobileNet, VGG16, and ResNet models and their performance is evaluated on benchmark datasets such as CIFAR-10, MNIST, and FMNIST.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1433-7541
1433-755X
DOI:10.1007/s10044-024-01277-w