Qfold: a new modeling paradigm for the RNA folding problem
Ribonucleic acid (RNA) molecules play informational, structural, and metabolic roles in all living cells. RNAs are chains of nucleotides containing bases {A, C, G, U} that interact via base pairings to determine higher order structure and functionality. The RNA folding problem is to predict one or m...
Saved in:
Published in | Journal of heuristics Vol. 27; no. 4; pp. 695 - 717 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ribonucleic acid (RNA) molecules play informational, structural, and metabolic roles in all living cells. RNAs are chains of nucleotides containing bases {A, C, G, U} that interact via base pairings to determine higher order structure and functionality. The RNA folding problem is to predict one or more secondary RNA structures from a given primary sequence of bases. From a mathematical modeling perspective, solutions to the RNA folding problem come from minimizing the thermodynamic free energy of a structure by selecting which bases will be paired, subject to a set of constraints. Here we report on a Quadratic Unconstrained Binary Optimization (QUBO) modeling paradigm that fits naturally with the parameters and constraints required for RNA folding prediction. Three QUBO models are presented along with a hybrid metaheuristic algorithm. Extensive testing results show a strong positive correlation with benchmark results. |
---|---|
ISSN: | 1381-1231 1572-9397 |
DOI: | 10.1007/s10732-021-09471-3 |