Mechanism and Effect of HNF4α Decrease in a Rat Model of Cirrhosis and Liver Failure

HNF4α, a master regulator of liver development and the mature hepatocyte phenotype, is down-regulated in chronic and inflammatory liver disease. We used contemporary transcriptomics and epigenomics to study the cause and effects of this down-regulation and characterized a multicellular etiology. Pro...

Full description

Saved in:
Bibliographic Details
Published inCellular and molecular gastroenterology and hepatology Vol. 17; no. 3; pp. 453 - 479
Main Authors Melis, Marta, Marino, Rebecca, Tian, Jianmin, Johnson, Carla, Sethi, Rahil, Oertel, Michael, Fox, Ira J., Locker, Joseph
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:HNF4α, a master regulator of liver development and the mature hepatocyte phenotype, is down-regulated in chronic and inflammatory liver disease. We used contemporary transcriptomics and epigenomics to study the cause and effects of this down-regulation and characterized a multicellular etiology. Progressive changes in the rat carbon tetrachloride model were studied by deep RNA sequencing and genome-wide chromatin immunoprecipitation sequencing analysis of transcription factor (TF) binding and chromatin modification. Studies compared decompensated cirrhosis with liver failure after 26 weeks of treatment with earlier compensated cirrhosis and with additional rat models of chronic fibrosis. Finally, to resolve cell-specific responses and intercellular signaling, we compared transcriptomes of liver, nonparenchymal, and inflammatory cells. HNF4α was significantly lower in 26-week cirrhosis, part of a general reduction of TFs that regulate metabolism. Nevertheless, increased binding of HNF4α contributed to strong activation of major phenotypic genes, whereas reduced binding to other genes had a moderate phenotypic effect. Decreased Hnf4a expression was the combined effect of STAT3 and nuclear factor kappa B (NFκB) activation, which similarly reduced expression of other metabolic TFs. STAT/NFκB also induced de novo expression of Osmr by hepatocytes to complement induced expression of Osm by nonparenchymal cells. Liver decompensation by inflammatory STAT3 and NFκB signaling was not a direct consequence of progressive cirrhosis. Despite significant reduction of Hnf4a expression, residual levels of this abundant TF still stimulated strong new gene expression. Reduction of HNF4α was part of a broad hepatocyte transcriptional response to inflammation. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2352-345X
2352-345X
DOI:10.1016/j.jcmgh.2023.11.009