Synaptic promiscuity in brain development

Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does the genome encode brain wiring in light of this apparent contradiction? Synaptic specificity is the outcom...

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 34; no. 3; pp. R102 - R116
Main Authors Wolterhoff, Neele, Hiesinger, P. Robin
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 05.02.2024
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does the genome encode brain wiring in light of this apparent contradiction? Synaptic specificity is the outcome of a long series of developmental processes and mechanisms before, during and after synapse formation. How much promiscuity is permissible or necessary at the moment of synaptic partner choice depends on the extent to which prior development restricts available partners or subsequent development corrects initially made synapses. Synaptic promiscuity at the moment of choice can thereby play important roles in the development of precise connectivity, but also facilitate developmental flexibility and robustness. In this review, we assess the experimental evidence for the prevalence and roles of promiscuous synapse formation during brain development. Many well-established experimental approaches are based on developmental genetic perturbation and an assessment of synaptic connectivity only in the adult; this can make it difficult to pinpoint when a given defect or mechanism occurred. In many cases, such studies reveal mechanisms that restrict partner availability already prior to synapse formation. Subsequently, at the moment of choice, factors including synaptic competency, interaction dynamics and molecular recognition further restrict synaptic partners. The discussion of the development of synaptic specificity through the lens of synaptic promiscuity suggests an algorithmic process based on neurons capable of promiscuous synapse formation that are continuously prevented from making the wrong choices, with no single mechanism or developmental time point sufficient to explain the outcome. Wolterhoff and Hiesinger review roles and mechanisms of the prevalent, context-dependent ability of nerve cells to form synapses with varying partners for the development of precision and robustness of neural connectivity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0960-9822
1879-0445
DOI:10.1016/j.cub.2023.12.037