Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability

Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 21; no. 5; pp. 816 - 826
Main Authors Zhao, Biao, Li, Yang, Liu, Junwei, Fan, Lei, Gao, Ka, Bai, Zhongyi, Liang, Luyang, Guo, Xiaoqin, Zhang, Rui
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave absorption performances of Co/CoO polyhedron paraffin composites with various Co/CoO contents were also studied. The results showed that the Co/CoO polyhedron paraffin composites exhibit enhanced microwave absorption properties with an increased Co/CoO content in the certain amount range. This phenomenon is observed because the conductive networks are gradually formed to cause leakage current loss with increasing Co/CoO content. However, the large leakage current induces impedance mismatch to prohibit microwaves from entering absorbers with a relatively high Co/CoO content. Thus, the Co/CoO polyhedrons paraffin composite with 50 wt% Co/CoO displays excellent microwave absorption properties. The optimal reflection loss (RL) is −45.3 dB at 12.5 GHz with a thickness of 1.7 mm. The effective absorption (below −10 dB) bandwidth can be tuned to the frequency of 4.5-18.0 GHz with thickness of 1.0-4.0 mm. The abundant reflection and scattering were caused by the symmetrical polyhedron-bowl structure. The micro-capacitors formed between Co/CoO as electrodes, paraffin as a dielectric, and the interfacial polarization collectively contribute to microwave absorption abilities. The symmetrical polyhedron-bowl structured Co/CoO displays enhanced microwave absorption properties.
AbstractList Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave absorption performances of Co/CoO polyhedron paraffin composites with various Co/CoO contents were also studied. The results showed that the Co/CoO polyhedron paraffin composites exhibit enhanced microwave absorption properties with an increased Co/CoO content in the certain amount range. This phenomenon is observed because the conductive networks are gradually formed to cause leakage current loss with increasing Co/CoO content. However, the large leakage current induces impedance mismatch to prohibit microwaves from entering absorbers with a relatively high Co/CoO content. Thus, the Co/CoO polyhedrons paraffin composite with 50 wt% Co/CoO displays excellent microwave absorption properties. The optimal reflection loss (RL) is −45.3 dB at 12.5 GHz with a thickness of 1.7 mm. The effective absorption (below −10 dB) bandwidth can be tuned to the frequency of 4.5–18.0 GHz with thickness of 1.0–4.0 mm. The abundant reflection and scattering were caused by the symmetrical polyhedron-bowl structure. The micro-capacitors formed between Co/CoO as electrodes, paraffin as a dielectric, and the interfacial polarization collectively contribute to microwave absorption abilities.
Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave absorption performances of Co/CoO polyhedron paraffin composites with various Co/CoO contents were also studied. The results showed that the Co/CoO polyhedron paraffin composites exhibit enhanced microwave absorption properties with an increased Co/CoO content in the certain amount range. This phenomenon is observed because the conductive networks are gradually formed to cause leakage current loss with increasing Co/CoO content. However, the large leakage current induces impedance mismatch to prohibit microwaves from entering absorbers with a relatively high Co/CoO content. Thus, the Co/CoO polyhedrons paraffin composite with 50 wt% Co/CoO displays excellent microwave absorption properties. The optimal reflection loss (RL) is −45.3 dB at 12.5 GHz with a thickness of 1.7 mm. The effective absorption (below −10 dB) bandwidth can be tuned to the frequency of 4.5–18.0 GHz with thickness of 1.0–4.0 mm. The abundant reflection and scattering were caused by the symmetrical polyhedron-bowl structure. The micro-capacitors formed between Co/CoO as electrodes, paraffin as a dielectric, and the interfacial polarization collectively contribute to microwave absorption abilities.
Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave absorption performances of Co/CoO polyhedron paraffin composites with various Co/CoO contents were also studied. The results showed that the Co/CoO polyhedron paraffin composites exhibit enhanced microwave absorption properties with an increased Co/CoO content in the certain amount range. This phenomenon is observed because the conductive networks are gradually formed to cause leakage current loss with increasing Co/CoO content. However, the large leakage current induces impedance mismatch to prohibit microwaves from entering absorbers with a relatively high Co/CoO content. Thus, the Co/CoO polyhedrons paraffin composite with 50 wt% Co/CoO displays excellent microwave absorption properties. The optimal reflection loss (RL) is −45.3 dB at 12.5 GHz with a thickness of 1.7 mm. The effective absorption (below −10 dB) bandwidth can be tuned to the frequency of 4.5-18.0 GHz with thickness of 1.0-4.0 mm. The abundant reflection and scattering were caused by the symmetrical polyhedron-bowl structure. The micro-capacitors formed between Co/CoO as electrodes, paraffin as a dielectric, and the interfacial polarization collectively contribute to microwave absorption abilities. The symmetrical polyhedron-bowl structured Co/CoO displays enhanced microwave absorption properties.
Author Liu, Junwei
Guo, Xiaoqin
Fan, Lei
Zhao, Biao
Bai, Zhongyi
Li, Yang
Zhang, Rui
Liang, Luyang
Gao, Ka
AuthorAffiliation Henan Key Laboratory of Aeronautical Materials and Application Technology
Zhengzhou University of Aeronautics
School of Material Science and Engineering
University of Toronto
Department of Mechanical and Industrial Engineering
Zhengzhou University
AuthorAffiliation_xml – sequence: 0
  name: Zhengzhou University of Aeronautics
– sequence: 0
  name: University of Toronto
– sequence: 0
  name: Department of Mechanical and Industrial Engineering
– sequence: 0
  name: Henan Key Laboratory of Aeronautical Materials and Application Technology
– sequence: 0
  name: School of Material Science and Engineering
– sequence: 0
  name: Zhengzhou University
Author_xml – sequence: 1
  givenname: Biao
  surname: Zhao
  fullname: Zhao, Biao
– sequence: 2
  givenname: Yang
  surname: Li
  fullname: Li, Yang
– sequence: 3
  givenname: Junwei
  surname: Liu
  fullname: Liu, Junwei
– sequence: 4
  givenname: Lei
  surname: Fan
  fullname: Fan, Lei
– sequence: 5
  givenname: Ka
  surname: Gao
  fullname: Gao, Ka
– sequence: 6
  givenname: Zhongyi
  surname: Bai
  fullname: Bai, Zhongyi
– sequence: 7
  givenname: Luyang
  surname: Liang
  fullname: Liang, Luyang
– sequence: 8
  givenname: Xiaoqin
  surname: Guo
  fullname: Guo, Xiaoqin
– sequence: 9
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
BookMark eNptkcFLwzAUxoNMcJtevAsBb0Jd0pS0HkeZUxjsoJ5LmrxuGWlTk8za_97OiYr4Lt93-H2Pj_cmaNTYBhC6pOSWEnY3k5kEQnmaihM0pgnnUUYYG_3yZ2ji_Y4QmlBKxmj31Nc1BKelMLi1pt-CcraJStsZnNtZbte402GLt_AuNrY5UEYEwMHiyrpOOIXBgAzO1mLTQNASd-INsCi9dW3QthmsNjr05-i0EsbDxZdO0cv94jl_iFbr5WM-X0WS0SxEigmqUuBcklIlcZLxmKg0zlTJeCIrVcaSM0ZIRStCJTApB0CwRCQwyDBTdH3c2zr7ugcfip3du6G5L2KaUk5ZRtKBIkdKOuu9g6qQOohD3-CENgUlxeGiRZ7li8-LzofIzZ9I63QtXP8_fHWEnZff3M972AciWIO8
CitedBy_id crossref_primary_10_1016_j_ceramint_2020_01_286
crossref_primary_10_1016_j_cej_2019_121914
crossref_primary_10_1016_j_apsusc_2023_158496
crossref_primary_10_1016_j_carbon_2023_118751
crossref_primary_10_1016_j_jcis_2022_08_094
crossref_primary_10_1021_acs_cgd_0c00598
crossref_primary_10_1088_1361_6528_ab97d1
crossref_primary_10_1016_j_apsusc_2022_152704
crossref_primary_10_1007_s10854_023_10409_7
crossref_primary_10_1016_j_ceramint_2019_12_002
crossref_primary_10_1016_j_ceramint_2021_05_219
crossref_primary_10_1016_j_jallcom_2023_172757
crossref_primary_10_1039_C9CE00858F
crossref_primary_10_1002_adfm_202007801
crossref_primary_10_1016_j_micromeso_2019_109584
crossref_primary_10_1016_j_compositesb_2019_03_055
crossref_primary_10_1016_j_jallcom_2019_151905
crossref_primary_10_1016_j_cej_2019_04_174
crossref_primary_10_1007_s10854_020_04548_4
crossref_primary_10_1016_j_jcis_2021_05_019
crossref_primary_10_1039_C9DT03447A
crossref_primary_10_1007_s10854_020_04605_y
crossref_primary_10_1016_j_apsusc_2021_149158
crossref_primary_10_1016_j_jcis_2023_03_183
crossref_primary_10_1016_j_jmst_2021_01_073
crossref_primary_10_1002_adfm_201900163
crossref_primary_10_1007_s12274_023_6272_z
crossref_primary_10_1016_j_ceramint_2019_05_089
crossref_primary_10_1016_j_optmat_2019_109213
crossref_primary_10_1016_j_jallcom_2024_177792
crossref_primary_10_1016_j_cej_2023_145296
crossref_primary_10_1007_s10854_019_01999_2
crossref_primary_10_1007_s10854_019_02377_8
crossref_primary_10_1007_s10854_020_03829_2
crossref_primary_10_1039_D4TA03562C
crossref_primary_10_1021_acs_jpcc_1c04386
crossref_primary_10_1016_j_jcis_2020_12_099
crossref_primary_10_1016_j_apsusc_2019_144894
crossref_primary_10_1016_j_jcis_2020_04_099
crossref_primary_10_1016_j_compositesb_2019_107577
crossref_primary_10_1016_j_jallcom_2019_07_334
crossref_primary_10_1016_j_jmmm_2021_168385
crossref_primary_10_1007_s10854_021_05385_9
crossref_primary_10_1007_s40820_019_0255_3
crossref_primary_10_1016_j_carbon_2020_05_072
crossref_primary_10_1016_j_jallcom_2021_161230
crossref_primary_10_1016_j_jallcom_2019_07_011
crossref_primary_10_1016_j_jallcom_2019_05_251
crossref_primary_10_1002_cjce_23717
crossref_primary_10_1039_D1TC05078H
crossref_primary_10_1007_s10854_021_06584_0
crossref_primary_10_1016_j_inoche_2019_107736
crossref_primary_10_1016_j_jallcom_2020_154426
crossref_primary_10_1002_celc_202001416
crossref_primary_10_1016_j_jallcom_2021_162317
crossref_primary_10_3390_nano10050902
crossref_primary_10_1016_j_cej_2020_128378
crossref_primary_10_1016_j_ceramint_2021_06_113
crossref_primary_10_1016_j_ceramint_2020_12_043
crossref_primary_10_1016_j_compositesb_2019_107507
crossref_primary_10_1016_j_jallcom_2019_05_336
crossref_primary_10_1016_j_jallcom_2021_163285
crossref_primary_10_1016_j_compositesa_2019_105687
crossref_primary_10_1016_j_jcis_2020_08_087
crossref_primary_10_1557_s43578_022_00505_5
crossref_primary_10_1016_j_carbon_2020_02_011
crossref_primary_10_1088_2053_1591_ab398f
crossref_primary_10_1007_s10854_020_04857_8
crossref_primary_10_1016_j_cej_2019_122797
crossref_primary_10_1016_j_ceramint_2019_09_124
crossref_primary_10_1016_j_jmst_2021_07_060
crossref_primary_10_1016_j_apsusc_2020_147052
crossref_primary_10_1016_j_ceramint_2019_09_125
Cites_doi 10.1021/acsami.7b00951
10.1021/acsami.5b12662
10.1002/adma.201503149
10.1039/C4CP01468E
10.1039/c0ce00805b
10.1002/adma.201706343
10.1016/j.jallcom.2017.02.024
10.1021/cm702352y
10.1103/PhysRevB.56.13849
10.1021/cg7010452
10.1002/adma.201303088
10.1063/1.3622144
10.1016/j.carbon.2017.01.077
10.1002/adma.200306460
10.1016/j.cej.2017.09.174
10.1016/j.carbon.2013.07.110
10.1039/c4ta00117f
10.1039/C3TA14203E
10.1039/C7NR02628E
10.1039/C8TC02520G
10.1039/C5NR03176A
10.1021/am404117v
10.1021/acsami.5b12203
10.1039/C6TA10591B
10.1039/b907048f
10.1002/adma.200304485
10.1039/C4RA05716C
10.1039/C7CP00629B
10.1039/C5TC01716E
10.1088/0957-4484/19/36/365608
10.1002/adma.201400108
10.1002/smll.201800987
10.1002/anie.201305819
10.1039/C5TA00086F
10.1039/C4TA00010B
10.1021/cg101254k
10.1039/C4TA03033H
10.1039/C7CE00235A
10.1039/c2jm34273a
10.1021/acsami.5b03177
10.1063/1.347502
10.1039/C6TC05057C
10.1039/C4CP05031B
10.1021/acsami.6b05480
10.1021/jp8081744
10.1039/C4TC00108G
10.1016/j.carbon.2018.07.044
10.1039/c2ce05910j
10.1016/j.physb.2009.12.026
10.1063/1.3204958
10.1002/adma.201405788
10.1016/j.carbon.2016.10.059
10.1039/C5TC02185E
10.1039/C5TC02512E
10.1039/C7CE01464C
10.1063/1.3250170
10.1021/jp1050386
10.1021/nn304630h
10.1063/1.3432441
10.1007/s12274-016-1295-3
10.1021/acsami.6b10886
10.1039/c2jm33068g
10.1016/j.cej.2016.12.117
10.1021/acsami.5b01654
10.1039/C5TC03874J
10.1021/acsami.6b15788
10.1021/acsami.5b05595
10.1039/c4tc00739e
10.1002/adfm.200500716
10.1039/C4TA02815E
10.1021/acsami.5b02716
10.1016/j.jcis.2017.09.029
10.1039/c3nr05238a
10.1039/C4NR06978A
10.1016/j.tca.2008.04.015
10.1088/0957-4484/27/6/065702
10.1039/C4CP04985C
10.1002/adma.201301752
10.1063/1.4892446
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/c8ce01677a
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 826
ExternalDocumentID 10_1039_C8CE01677A
c8ce01677a
GroupedDBID -JG
0-7
0R~
29F
5GY
6J9
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
E3Z
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
R56
7U5
8FD
L7M
ID FETCH-LOGICAL-c318t-d3a1d7e66c0bd4248620d728db364cfdb2c63300f1f01ce3cc620a34a4e0a3333
ISSN 1466-8033
IngestDate Sun Jun 29 14:23:55 EDT 2025
Tue Jul 01 02:21:02 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
Tue Dec 17 21:00:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-d3a1d7e66c0bd4248620d728db364cfdb2c63300f1f01ce3cc620a34a4e0a3333
Notes 10.1039/c8ce01677a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3538-2195
PQID 2171613807
PQPubID 2047491
PageCount 11
ParticipantIDs crossref_primary_10_1039_C8CE01677A
proquest_journals_2171613807
crossref_citationtrail_10_1039_C8CE01677A
rsc_primary_c8ce01677a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Han (C8CE01677A-(cit23)/*[position()=1]) 2017; 9
Deng (C8CE01677A-(cit34)/*[position()=1]) 2018; 509
Li (C8CE01677A-(cit4)/*[position()=1]) 2014; 2
Lu (C8CE01677A-(cit63)/*[position()=1]) 2015; 7
Wen (C8CE01677A-(cit73)/*[position()=1]) 2014; 4
Cao (C8CE01677A-(cit80)/*[position()=1]) 2015; 3
Yu (C8CE01677A-(cit24)/*[position()=1]) 2012; 22
Zhao (C8CE01677A-(cit6)/*[position()=1]) 2016; 8
Wu (C8CE01677A-(cit10)/*[position()=1]) 2015; 3
Zhao (C8CE01677A-(cit77)/*[position()=1]) 2017; 19
Wen (C8CE01677A-(cit72)/*[position()=1]) 2014; 116
Liu (C8CE01677A-(cit35)/*[position()=1]) 2014; 6
Wang (C8CE01677A-(cit71)/*[position()=1]) 2015; 17
Wu (C8CE01677A-(cit13)/*[position()=1]) 2018; 333
Li (C8CE01677A-(cit41)/*[position()=1]) 2009; 19
Qiu (C8CE01677A-(cit26)/*[position()=1]) 2017; 9
Liu (C8CE01677A-(cit60)/*[position()=1]) 2016; 8
Zhao (C8CE01677A-(cit66)/*[position()=1]) 2015; 17
Quan (C8CE01677A-(cit2)/*[position()=1]) 2017; 9
Zhang (C8CE01677A-(cit21)/*[position()=1]) 2015; 27
Liu (C8CE01677A-(cit33)/*[position()=1]) 2017; 5
Cao (C8CE01677A-(cit48)/*[position()=1]) 2013; 52
Tang (C8CE01677A-(cit36)/*[position()=1]) 2008; 473
Zhao (C8CE01677A-(cit3)/*[position()=1]) 2017; 10
Liu (C8CE01677A-(cit8)/*[position()=1]) 2017; 313
Wen (C8CE01677A-(cit79)/*[position()=1]) 2014; 26
Lv (C8CE01677A-(cit1)/*[position()=1]) 2018; 30
Deng (C8CE01677A-(cit37)/*[position()=1]) 2018; 6
Zhang (C8CE01677A-(cit5)/*[position()=1]) 2016; 8
Liu (C8CE01677A-(cit44)/*[position()=1]) 2008; 19
Han (C8CE01677A-(cit25)/*[position()=1]) 2014; 2
Lü (C8CE01677A-(cit64)/*[position()=1]) 2015; 7
Aharoni (C8CE01677A-(cit67)/*[position()=1]) 1991; 69
Wen (C8CE01677A-(cit16)/*[position()=1]) 2014; 16
Lv (C8CE01677A-(cit38)/*[position()=1]) 2015; 7
Chen (C8CE01677A-(cit28)/*[position()=1]) 2010; 405
Song (C8CE01677A-(cit15)/*[position()=1]) 2017; 116
Wang (C8CE01677A-(cit22)/*[position()=1]) 2012; 6
Wang (C8CE01677A-(cit18)/*[position()=1]) 2010; 114
Che (C8CE01677A-(cit65)/*[position()=1]) 2004; 16
Tong (C8CE01677A-(cit12)/*[position()=1]) 2014; 2
Cao (C8CE01677A-(cit32)/*[position()=1]) 2011; 11
Yang (C8CE01677A-(cit52)/*[position()=1]) 2018; 352
Zhao (C8CE01677A-(cit14)/*[position()=1]) 2017; 19
Liu (C8CE01677A-(cit29)/*[position()=1]) 2016; 28
Xia (C8CE01677A-(cit76)/*[position()=1]) 2013; 25
Watts (C8CE01677A-(cit58)/*[position()=1]) 2003; 15
He (C8CE01677A-(cit19)/*[position()=1]) 2012; 22
Xie (C8CE01677A-(cit30)/*[position()=1]) 2017; 5
Zhao (C8CE01677A-(cit50)/*[position()=1]) 2015; 3
Ding (C8CE01677A-(cit69)/*[position()=1]) 2017; 111
Yec (C8CE01677A-(cit49)/*[position()=1]) 2014; 2
Kitakami (C8CE01677A-(cit31)/*[position()=1]) 1997; 56
Lu (C8CE01677A-(cit55)/*[position()=1]) 2016; 27
Lv (C8CE01677A-(cit62)/*[position()=1]) 2016; 8
Liu (C8CE01677A-(cit57)/*[position()=1]) 2016; 4
Tong (C8CE01677A-(cit39)/*[position()=1]) 2012; 14
Ma (C8CE01677A-(cit27)/*[position()=1]) 2010; 96
Wen (C8CE01677A-(cit59)/*[position()=1]) 2013; 65
Chen (C8CE01677A-(cit61)/*[position()=1]) 2009; 106
Wang (C8CE01677A-(cit54)/*[position()=1]) 2014; 2
Wang (C8CE01677A-(cit74)/*[position()=1]) 2014; 2
Zhang (C8CE01677A-(cit42)/*[position()=1]) 2008; 8
Zhao (C8CE01677A-(cit56)/*[position()=1]) 2015; 7
Cao (C8CE01677A-(cit78)/*[position()=1]) 2018; 14
Wei (C8CE01677A-(cit7)/*[position()=1]) 2014; 2
Xu (C8CE01677A-(cit47)/*[position()=1]) 2006; 16
Guan (C8CE01677A-(cit45)/*[position()=1]) 2011; 13
Dang (C8CE01677A-(cit53)/*[position()=1]) 2013; 25
Lv (C8CE01677A-(cit75)/*[position()=1]) 2015; 3
Pan (C8CE01677A-(cit40)/*[position()=1]) 2013; 5
Liu (C8CE01677A-(cit43)/*[position()=1]) 2009; 113
Zhao (C8CE01677A-(cit70)/*[position()=1]) 2017; 19
Zhao (C8CE01677A-(cit46)/*[position()=1]) 2008; 20
Cheng (C8CE01677A-(cit9)/*[position()=1]) 2017; 704
Shi (C8CE01677A-(cit17)/*[position()=1]) 2009; 95
Zhang (C8CE01677A-(cit51)/*[position()=1]) 2015; 7
Xu (C8CE01677A-(cit68)/*[position()=1]) 2018; 139
Wang (C8CE01677A-(cit11)/*[position()=1]) 2015; 7
Liu (C8CE01677A-(cit20)/*[position()=1]) 2011; 110
References_xml – volume: 9
  start-page: 11803
  year: 2017
  ident: C8CE01677A-(cit23)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00951
– volume: 8
  start-page: 6529
  year: 2016
  ident: C8CE01677A-(cit62)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12662
– volume: 28
  start-page: 486
  year: 2016
  ident: C8CE01677A-(cit29)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503149
– volume: 16
  start-page: 18333
  year: 2014
  ident: C8CE01677A-(cit16)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01468E
– volume: 13
  start-page: 2636
  year: 2011
  ident: C8CE01677A-(cit45)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c0ce00805b
– volume: 30
  start-page: 1706343
  year: 2018
  ident: C8CE01677A-(cit1)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706343
– volume: 704
  start-page: 289
  year: 2017
  ident: C8CE01677A-(cit9)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.02.024
– volume: 20
  start-page: 198
  year: 2008
  ident: C8CE01677A-(cit46)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm702352y
– volume: 56
  start-page: 13849
  year: 1997
  ident: C8CE01677A-(cit31)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.56.13849
– volume: 8
  start-page: 3206
  year: 2008
  ident: C8CE01677A-(cit42)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg7010452
– volume: 25
  start-page: 6905
  year: 2013
  ident: C8CE01677A-(cit76)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303088
– volume: 110
  start-page: 033918
  year: 2011
  ident: C8CE01677A-(cit20)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3622144
– volume: 116
  start-page: 50
  year: 2017
  ident: C8CE01677A-(cit15)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.077
– volume: 16
  start-page: 401
  year: 2004
  ident: C8CE01677A-(cit65)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306460
– volume: 333
  start-page: 519
  year: 2018
  ident: C8CE01677A-(cit13)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.174
– volume: 65
  start-page: 124
  year: 2013
  ident: C8CE01677A-(cit59)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.07.110
– volume: 2
  start-page: 7373
  year: 2014
  ident: C8CE01677A-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta00117f
– volume: 2
  start-page: 4843
  year: 2014
  ident: C8CE01677A-(cit49)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14203E
– volume: 9
  start-page: 7408
  year: 2017
  ident: C8CE01677A-(cit26)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR02628E
– volume: 6
  start-page: 7128
  year: 2018
  ident: C8CE01677A-(cit37)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02520G
– volume: 7
  start-page: 12932
  year: 2015
  ident: C8CE01677A-(cit51)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR03176A
– volume: 5
  start-page: 12716
  year: 2013
  ident: C8CE01677A-(cit40)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404117v
– volume: 8
  start-page: 3494
  year: 2016
  ident: C8CE01677A-(cit5)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12203
– volume: 5
  start-page: 5865
  year: 2017
  ident: C8CE01677A-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10591B
– volume: 19
  start-page: 5207
  year: 2009
  ident: C8CE01677A-(cit41)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b907048f
– volume: 15
  start-page: 600
  year: 2003
  ident: C8CE01677A-(cit58)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304485
– volume: 4
  start-page: 40456
  year: 2014
  ident: C8CE01677A-(cit73)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05716C
– volume: 19
  start-page: 9128
  year: 2017
  ident: C8CE01677A-(cit77)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00629B
– volume: 3
  start-page: 7677
  year: 2015
  ident: C8CE01677A-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC01716E
– volume: 19
  start-page: 365608
  year: 2008
  ident: C8CE01677A-(cit44)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/36/365608
– volume: 26
  start-page: 3484
  year: 2014
  ident: C8CE01677A-(cit79)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400108
– volume: 14
  start-page: 1800987
  year: 2018
  ident: C8CE01677A-(cit78)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201800987
– volume: 52
  start-page: 10986
  year: 2013
  ident: C8CE01677A-(cit48)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201305819
– volume: 3
  start-page: 10345
  year: 2015
  ident: C8CE01677A-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00086F
– volume: 2
  start-page: 5516
  year: 2014
  ident: C8CE01677A-(cit7)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00010B
– volume: 11
  start-page: 472
  year: 2011
  ident: C8CE01677A-(cit32)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg101254k
– volume: 2
  start-page: 16403
  year: 2014
  ident: C8CE01677A-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03033H
– volume: 19
  start-page: 2178
  year: 2017
  ident: C8CE01677A-(cit14)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00235A
– volume: 22
  start-page: 21679
  year: 2012
  ident: C8CE01677A-(cit24)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34273a
– volume: 7
  start-page: 13604
  year: 2015
  ident: C8CE01677A-(cit64)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03177
– volume: 69
  start-page: 7762
  year: 1991
  ident: C8CE01677A-(cit67)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.347502
– volume: 5
  start-page: 2175
  year: 2017
  ident: C8CE01677A-(cit30)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05057C
– volume: 17
  start-page: 2531
  year: 2015
  ident: C8CE01677A-(cit66)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05031B
– volume: 8
  start-page: 22615
  year: 2016
  ident: C8CE01677A-(cit60)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05480
– volume: 113
  start-page: 3436
  year: 2009
  ident: C8CE01677A-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8081744
– volume: 2
  start-page: 3769
  year: 2014
  ident: C8CE01677A-(cit74)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00108G
– volume: 139
  start-page: 759
  year: 2018
  ident: C8CE01677A-(cit68)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.07.044
– volume: 14
  start-page: 2071
  year: 2012
  ident: C8CE01677A-(cit39)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c2ce05910j
– volume: 405
  start-page: 1484
  year: 2010
  ident: C8CE01677A-(cit28)/*[position()=1]
  publication-title: Phys. B
  doi: 10.1016/j.physb.2009.12.026
– volume: 106
  start-page: 054303
  year: 2009
  ident: C8CE01677A-(cit61)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3204958
– volume: 27
  start-page: 2049
  year: 2015
  ident: C8CE01677A-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405788
– volume: 111
  start-page: 722
  year: 2017
  ident: C8CE01677A-(cit69)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.10.059
– volume: 3
  start-page: 10017
  year: 2015
  ident: C8CE01677A-(cit80)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC02185E
– volume: 3
  start-page: 10232
  year: 2015
  ident: C8CE01677A-(cit75)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC02512E
– volume: 19
  start-page: 6095
  year: 2017
  ident: C8CE01677A-(cit70)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE01464C
– volume: 95
  start-page: 163108
  year: 2009
  ident: C8CE01677A-(cit17)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3250170
– volume: 114
  start-page: 14826
  year: 2010
  ident: C8CE01677A-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1050386
– volume: 6
  start-page: 11009
  year: 2012
  ident: C8CE01677A-(cit22)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn304630h
– volume: 96
  start-page: 202507
  year: 2010
  ident: C8CE01677A-(cit27)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3432441
– volume: 10
  start-page: 331
  year: 2017
  ident: C8CE01677A-(cit3)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1295-3
– volume: 8
  start-page: 28917
  year: 2016
  ident: C8CE01677A-(cit6)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10886
– volume: 22
  start-page: 22160
  year: 2012
  ident: C8CE01677A-(cit19)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33068g
– volume: 313
  start-page: 734
  year: 2017
  ident: C8CE01677A-(cit8)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.117
– volume: 7
  start-page: 9776
  year: 2015
  ident: C8CE01677A-(cit38)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01654
– volume: 4
  start-page: 1727
  year: 2016
  ident: C8CE01677A-(cit57)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC03874J
– volume: 9
  start-page: 9964
  year: 2017
  ident: C8CE01677A-(cit2)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15788
– volume: 7
  start-page: 19408
  year: 2015
  ident: C8CE01677A-(cit63)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05595
– volume: 2
  start-page: 5216
  year: 2014
  ident: C8CE01677A-(cit4)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c4tc00739e
– volume: 16
  start-page: 903
  year: 2006
  ident: C8CE01677A-(cit47)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500716
– volume: 2
  start-page: 14940
  year: 2014
  ident: C8CE01677A-(cit54)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02815E
– volume: 7
  start-page: 12951
  year: 2015
  ident: C8CE01677A-(cit56)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02716
– volume: 509
  start-page: 406
  year: 2018
  ident: C8CE01677A-(cit34)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.09.029
– volume: 6
  start-page: 2447
  year: 2014
  ident: C8CE01677A-(cit35)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr05238a
– volume: 7
  start-page: 7189
  year: 2015
  ident: C8CE01677A-(cit11)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR06978A
– volume: 473
  start-page: 68
  year: 2008
  ident: C8CE01677A-(cit36)/*[position()=1]
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2008.04.015
– volume: 27
  start-page: 065702
  year: 2016
  ident: C8CE01677A-(cit55)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/6/065702
– volume: 17
  start-page: 3796
  year: 2015
  ident: C8CE01677A-(cit71)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04985C
– volume: 25
  start-page: 6334
  year: 2013
  ident: C8CE01677A-(cit53)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301752
– volume: 116
  start-page: 054310
  year: 2014
  ident: C8CE01677A-(cit72)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4892446
– volume: 352
  start-page: 510
  year: 2018
  ident: C8CE01677A-(cit52)/*[position()=1]
  publication-title: Chem. – Eur. J.
SSID ssj0014110
Score 2.5099318
Snippet Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of...
Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 816
SubjectTerms Composite materials
Current loss
Electromagnetic radiation
Leakage current
Microwave absorption
Morphology
Paraffins
Plates (structural members)
Polyhedra
Reflection
Thickness
Title Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability
URI https://www.proquest.com/docview/2171613807
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9NAEIdXNL3AAfGqCC1oJbigytT2rh89BiuoIB4HUqmcLO_DaavEjhxXafjrmfGuHy1FAnJworWdw37r2dnx_mYIeSNjgB67wol9FcMCJWb4zOVOyCKpIhVkIkI18pev4ckp_3QWnLUl4a26pBbv5M87dSX_QxXagCuqZP-BbPen0AC_gS8cgTAc_4rx9-1yiRWxsJ9X5WJ7rlVVFo4oNxgRwNS35TcTaT3X19m8CfqtFuBdoscJ3irumD20hXCW2bxAQePhBusRZWJdVsaamETeN97-JtV2XU-LOapLBpHnJur6_iIru10-zVaBH5mdHZuWK6MFKTb6ohs7Vv9gW2wMwto4bSwmDzGjsclm0ZpUI3q2QycY2MfYC4dTrRHL_2bFXYZJUGUsNYokosFc1e0g7E_ukF0flgj-iOxOprOPn7t3SBw8mzYhLTs-6u-46YL064qdqi360jgXs0fkoV0V0IlB_Jjc08UT8mCQK_IpuRzAprdg06Q8AtQUUdMONW1Q07qkFjW9hZoiatqjphb1M3L6YTpLThxbKMORYJJrR7HMU5EOQ-kKxX0Oq1RXRX6sBAu5zJXwZciY6-Ze7npSMynhgozxjGv4gs8eGRVloZ8TGjAhuCcYx6rkbp6JQLNIcHD0eCQ8zcfkbdt3qbRZ5LGYySJtdjOw4zSJk2nTz5Mxed1duzK5U-686qBFkNpna536mMXJw2IIY7IHWLr7e4ov_nRin9zHMWriZAdkVFdX-iV4jrV4ZYfIL-d4dKo
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetrical+polyhedron-bowl+Co%2FCoO+with+hexagonal+plate+to+forward+electromagnetic+wave+absorption+ability&rft.jtitle=CrystEngComm&rft.au=Zhao%2C+Biao&rft.au=Li%2C+Yang&rft.au=Liu%2C+Junwei&rft.au=Fan%2C+Lei&rft.date=2019&rft.eissn=1466-8033&rft.volume=21&rft.issue=5&rft.spage=816&rft.epage=826&rft_id=info:doi/10.1039%2Fc8ce01677a&rft.externalDocID=c8ce01677a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon