Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability
Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave...
Saved in:
Published in | CrystEngComm Vol. 21; no. 5; pp. 816 - 826 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared
via
a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave absorption performances of Co/CoO polyhedron paraffin composites with various Co/CoO contents were also studied. The results showed that the Co/CoO polyhedron paraffin composites exhibit enhanced microwave absorption properties with an increased Co/CoO content in the certain amount range. This phenomenon is observed because the conductive networks are gradually formed to cause leakage current loss with increasing Co/CoO content. However, the large leakage current induces impedance mismatch to prohibit microwaves from entering absorbers with a relatively high Co/CoO content. Thus, the Co/CoO polyhedrons paraffin composite with 50 wt% Co/CoO displays excellent microwave absorption properties. The optimal reflection loss (RL) is −45.3 dB at 12.5 GHz with a thickness of 1.7 mm. The effective absorption (below −10 dB) bandwidth can be tuned to the frequency of 4.5-18.0 GHz with thickness of 1.0-4.0 mm. The abundant reflection and scattering were caused by the symmetrical polyhedron-bowl structure. The micro-capacitors formed between Co/CoO as electrodes, paraffin as a dielectric, and the interfacial polarization collectively contribute to microwave absorption abilities.
The symmetrical polyhedron-bowl structured Co/CoO displays enhanced microwave absorption properties. |
---|---|
AbstractList | Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared
via
a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave absorption performances of Co/CoO polyhedron paraffin composites with various Co/CoO contents were also studied. The results showed that the Co/CoO polyhedron paraffin composites exhibit enhanced microwave absorption properties with an increased Co/CoO content in the certain amount range. This phenomenon is observed because the conductive networks are gradually formed to cause leakage current loss with increasing Co/CoO content. However, the large leakage current induces impedance mismatch to prohibit microwaves from entering absorbers with a relatively high Co/CoO content. Thus, the Co/CoO polyhedrons paraffin composite with 50 wt% Co/CoO displays excellent microwave absorption properties. The optimal reflection loss (RL) is −45.3 dB at 12.5 GHz with a thickness of 1.7 mm. The effective absorption (below −10 dB) bandwidth can be tuned to the frequency of 4.5–18.0 GHz with thickness of 1.0–4.0 mm. The abundant reflection and scattering were caused by the symmetrical polyhedron-bowl structure. The micro-capacitors formed between Co/CoO as electrodes, paraffin as a dielectric, and the interfacial polarization collectively contribute to microwave absorption abilities. Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave absorption performances of Co/CoO polyhedron paraffin composites with various Co/CoO contents were also studied. The results showed that the Co/CoO polyhedron paraffin composites exhibit enhanced microwave absorption properties with an increased Co/CoO content in the certain amount range. This phenomenon is observed because the conductive networks are gradually formed to cause leakage current loss with increasing Co/CoO content. However, the large leakage current induces impedance mismatch to prohibit microwaves from entering absorbers with a relatively high Co/CoO content. Thus, the Co/CoO polyhedrons paraffin composite with 50 wt% Co/CoO displays excellent microwave absorption properties. The optimal reflection loss (RL) is −45.3 dB at 12.5 GHz with a thickness of 1.7 mm. The effective absorption (below −10 dB) bandwidth can be tuned to the frequency of 4.5–18.0 GHz with thickness of 1.0–4.0 mm. The abundant reflection and scattering were caused by the symmetrical polyhedron-bowl structure. The micro-capacitors formed between Co/CoO as electrodes, paraffin as a dielectric, and the interfacial polarization collectively contribute to microwave absorption abilities. Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of reaction conditions (solvent constituents and reaction times) on the morphologies of Co/CoO products were investigated in detail. The microwave absorption performances of Co/CoO polyhedron paraffin composites with various Co/CoO contents were also studied. The results showed that the Co/CoO polyhedron paraffin composites exhibit enhanced microwave absorption properties with an increased Co/CoO content in the certain amount range. This phenomenon is observed because the conductive networks are gradually formed to cause leakage current loss with increasing Co/CoO content. However, the large leakage current induces impedance mismatch to prohibit microwaves from entering absorbers with a relatively high Co/CoO content. Thus, the Co/CoO polyhedrons paraffin composite with 50 wt% Co/CoO displays excellent microwave absorption properties. The optimal reflection loss (RL) is −45.3 dB at 12.5 GHz with a thickness of 1.7 mm. The effective absorption (below −10 dB) bandwidth can be tuned to the frequency of 4.5-18.0 GHz with thickness of 1.0-4.0 mm. The abundant reflection and scattering were caused by the symmetrical polyhedron-bowl structure. The micro-capacitors formed between Co/CoO as electrodes, paraffin as a dielectric, and the interfacial polarization collectively contribute to microwave absorption abilities. The symmetrical polyhedron-bowl structured Co/CoO displays enhanced microwave absorption properties. |
Author | Liu, Junwei Guo, Xiaoqin Fan, Lei Zhao, Biao Bai, Zhongyi Li, Yang Zhang, Rui Liang, Luyang Gao, Ka |
AuthorAffiliation | Henan Key Laboratory of Aeronautical Materials and Application Technology Zhengzhou University of Aeronautics School of Material Science and Engineering University of Toronto Department of Mechanical and Industrial Engineering Zhengzhou University |
AuthorAffiliation_xml | – sequence: 0 name: Zhengzhou University of Aeronautics – sequence: 0 name: University of Toronto – sequence: 0 name: Department of Mechanical and Industrial Engineering – sequence: 0 name: Henan Key Laboratory of Aeronautical Materials and Application Technology – sequence: 0 name: School of Material Science and Engineering – sequence: 0 name: Zhengzhou University |
Author_xml | – sequence: 1 givenname: Biao surname: Zhao fullname: Zhao, Biao – sequence: 2 givenname: Yang surname: Li fullname: Li, Yang – sequence: 3 givenname: Junwei surname: Liu fullname: Liu, Junwei – sequence: 4 givenname: Lei surname: Fan fullname: Fan, Lei – sequence: 5 givenname: Ka surname: Gao fullname: Gao, Ka – sequence: 6 givenname: Zhongyi surname: Bai fullname: Bai, Zhongyi – sequence: 7 givenname: Luyang surname: Liang fullname: Liang, Luyang – sequence: 8 givenname: Xiaoqin surname: Guo fullname: Guo, Xiaoqin – sequence: 9 givenname: Rui surname: Zhang fullname: Zhang, Rui |
BookMark | eNptkcFLwzAUxoNMcJtevAsBb0Jd0pS0HkeZUxjsoJ5LmrxuGWlTk8za_97OiYr4Lt93-H2Pj_cmaNTYBhC6pOSWEnY3k5kEQnmaihM0pgnnUUYYG_3yZ2ji_Y4QmlBKxmj31Nc1BKelMLi1pt-CcraJStsZnNtZbte402GLt_AuNrY5UEYEwMHiyrpOOIXBgAzO1mLTQNASd-INsCi9dW3QthmsNjr05-i0EsbDxZdO0cv94jl_iFbr5WM-X0WS0SxEigmqUuBcklIlcZLxmKg0zlTJeCIrVcaSM0ZIRStCJTApB0CwRCQwyDBTdH3c2zr7ugcfip3du6G5L2KaUk5ZRtKBIkdKOuu9g6qQOohD3-CENgUlxeGiRZ7li8-LzofIzZ9I63QtXP8_fHWEnZff3M972AciWIO8 |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2020_01_286 crossref_primary_10_1016_j_cej_2019_121914 crossref_primary_10_1016_j_apsusc_2023_158496 crossref_primary_10_1016_j_carbon_2023_118751 crossref_primary_10_1016_j_jcis_2022_08_094 crossref_primary_10_1021_acs_cgd_0c00598 crossref_primary_10_1088_1361_6528_ab97d1 crossref_primary_10_1016_j_apsusc_2022_152704 crossref_primary_10_1007_s10854_023_10409_7 crossref_primary_10_1016_j_ceramint_2019_12_002 crossref_primary_10_1016_j_ceramint_2021_05_219 crossref_primary_10_1016_j_jallcom_2023_172757 crossref_primary_10_1039_C9CE00858F crossref_primary_10_1002_adfm_202007801 crossref_primary_10_1016_j_micromeso_2019_109584 crossref_primary_10_1016_j_compositesb_2019_03_055 crossref_primary_10_1016_j_jallcom_2019_151905 crossref_primary_10_1016_j_cej_2019_04_174 crossref_primary_10_1007_s10854_020_04548_4 crossref_primary_10_1016_j_jcis_2021_05_019 crossref_primary_10_1039_C9DT03447A crossref_primary_10_1007_s10854_020_04605_y crossref_primary_10_1016_j_apsusc_2021_149158 crossref_primary_10_1016_j_jcis_2023_03_183 crossref_primary_10_1016_j_jmst_2021_01_073 crossref_primary_10_1002_adfm_201900163 crossref_primary_10_1007_s12274_023_6272_z crossref_primary_10_1016_j_ceramint_2019_05_089 crossref_primary_10_1016_j_optmat_2019_109213 crossref_primary_10_1016_j_jallcom_2024_177792 crossref_primary_10_1016_j_cej_2023_145296 crossref_primary_10_1007_s10854_019_01999_2 crossref_primary_10_1007_s10854_019_02377_8 crossref_primary_10_1007_s10854_020_03829_2 crossref_primary_10_1039_D4TA03562C crossref_primary_10_1021_acs_jpcc_1c04386 crossref_primary_10_1016_j_jcis_2020_12_099 crossref_primary_10_1016_j_apsusc_2019_144894 crossref_primary_10_1016_j_jcis_2020_04_099 crossref_primary_10_1016_j_compositesb_2019_107577 crossref_primary_10_1016_j_jallcom_2019_07_334 crossref_primary_10_1016_j_jmmm_2021_168385 crossref_primary_10_1007_s10854_021_05385_9 crossref_primary_10_1007_s40820_019_0255_3 crossref_primary_10_1016_j_carbon_2020_05_072 crossref_primary_10_1016_j_jallcom_2021_161230 crossref_primary_10_1016_j_jallcom_2019_07_011 crossref_primary_10_1016_j_jallcom_2019_05_251 crossref_primary_10_1002_cjce_23717 crossref_primary_10_1039_D1TC05078H crossref_primary_10_1007_s10854_021_06584_0 crossref_primary_10_1016_j_inoche_2019_107736 crossref_primary_10_1016_j_jallcom_2020_154426 crossref_primary_10_1002_celc_202001416 crossref_primary_10_1016_j_jallcom_2021_162317 crossref_primary_10_3390_nano10050902 crossref_primary_10_1016_j_cej_2020_128378 crossref_primary_10_1016_j_ceramint_2021_06_113 crossref_primary_10_1016_j_ceramint_2020_12_043 crossref_primary_10_1016_j_compositesb_2019_107507 crossref_primary_10_1016_j_jallcom_2019_05_336 crossref_primary_10_1016_j_jallcom_2021_163285 crossref_primary_10_1016_j_compositesa_2019_105687 crossref_primary_10_1016_j_jcis_2020_08_087 crossref_primary_10_1557_s43578_022_00505_5 crossref_primary_10_1016_j_carbon_2020_02_011 crossref_primary_10_1088_2053_1591_ab398f crossref_primary_10_1007_s10854_020_04857_8 crossref_primary_10_1016_j_cej_2019_122797 crossref_primary_10_1016_j_ceramint_2019_09_124 crossref_primary_10_1016_j_jmst_2021_07_060 crossref_primary_10_1016_j_apsusc_2020_147052 crossref_primary_10_1016_j_ceramint_2019_09_125 |
Cites_doi | 10.1021/acsami.7b00951 10.1021/acsami.5b12662 10.1002/adma.201503149 10.1039/C4CP01468E 10.1039/c0ce00805b 10.1002/adma.201706343 10.1016/j.jallcom.2017.02.024 10.1021/cm702352y 10.1103/PhysRevB.56.13849 10.1021/cg7010452 10.1002/adma.201303088 10.1063/1.3622144 10.1016/j.carbon.2017.01.077 10.1002/adma.200306460 10.1016/j.cej.2017.09.174 10.1016/j.carbon.2013.07.110 10.1039/c4ta00117f 10.1039/C3TA14203E 10.1039/C7NR02628E 10.1039/C8TC02520G 10.1039/C5NR03176A 10.1021/am404117v 10.1021/acsami.5b12203 10.1039/C6TA10591B 10.1039/b907048f 10.1002/adma.200304485 10.1039/C4RA05716C 10.1039/C7CP00629B 10.1039/C5TC01716E 10.1088/0957-4484/19/36/365608 10.1002/adma.201400108 10.1002/smll.201800987 10.1002/anie.201305819 10.1039/C5TA00086F 10.1039/C4TA00010B 10.1021/cg101254k 10.1039/C4TA03033H 10.1039/C7CE00235A 10.1039/c2jm34273a 10.1021/acsami.5b03177 10.1063/1.347502 10.1039/C6TC05057C 10.1039/C4CP05031B 10.1021/acsami.6b05480 10.1021/jp8081744 10.1039/C4TC00108G 10.1016/j.carbon.2018.07.044 10.1039/c2ce05910j 10.1016/j.physb.2009.12.026 10.1063/1.3204958 10.1002/adma.201405788 10.1016/j.carbon.2016.10.059 10.1039/C5TC02185E 10.1039/C5TC02512E 10.1039/C7CE01464C 10.1063/1.3250170 10.1021/jp1050386 10.1021/nn304630h 10.1063/1.3432441 10.1007/s12274-016-1295-3 10.1021/acsami.6b10886 10.1039/c2jm33068g 10.1016/j.cej.2016.12.117 10.1021/acsami.5b01654 10.1039/C5TC03874J 10.1021/acsami.6b15788 10.1021/acsami.5b05595 10.1039/c4tc00739e 10.1002/adfm.200500716 10.1039/C4TA02815E 10.1021/acsami.5b02716 10.1016/j.jcis.2017.09.029 10.1039/c3nr05238a 10.1039/C4NR06978A 10.1016/j.tca.2008.04.015 10.1088/0957-4484/27/6/065702 10.1039/C4CP04985C 10.1002/adma.201301752 10.1063/1.4892446 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/c8ce01677a |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 826 |
ExternalDocumentID | 10_1039_C8CE01677A c8ce01677a |
GroupedDBID | -JG 0-7 0R~ 29F 5GY 6J9 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 E3Z EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION R56 7U5 8FD L7M |
ID | FETCH-LOGICAL-c318t-d3a1d7e66c0bd4248620d728db364cfdb2c63300f1f01ce3cc620a34a4e0a3333 |
ISSN | 1466-8033 |
IngestDate | Sun Jun 29 14:23:55 EDT 2025 Tue Jul 01 02:21:02 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 Tue Dec 17 21:00:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-d3a1d7e66c0bd4248620d728db364cfdb2c63300f1f01ce3cc620a34a4e0a3333 |
Notes | 10.1039/c8ce01677a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3538-2195 |
PQID | 2171613807 |
PQPubID | 2047491 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1039_C8CE01677A proquest_journals_2171613807 crossref_citationtrail_10_1039_C8CE01677A rsc_primary_c8ce01677a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Han (C8CE01677A-(cit23)/*[position()=1]) 2017; 9 Deng (C8CE01677A-(cit34)/*[position()=1]) 2018; 509 Li (C8CE01677A-(cit4)/*[position()=1]) 2014; 2 Lu (C8CE01677A-(cit63)/*[position()=1]) 2015; 7 Wen (C8CE01677A-(cit73)/*[position()=1]) 2014; 4 Cao (C8CE01677A-(cit80)/*[position()=1]) 2015; 3 Yu (C8CE01677A-(cit24)/*[position()=1]) 2012; 22 Zhao (C8CE01677A-(cit6)/*[position()=1]) 2016; 8 Wu (C8CE01677A-(cit10)/*[position()=1]) 2015; 3 Zhao (C8CE01677A-(cit77)/*[position()=1]) 2017; 19 Wen (C8CE01677A-(cit72)/*[position()=1]) 2014; 116 Liu (C8CE01677A-(cit35)/*[position()=1]) 2014; 6 Wang (C8CE01677A-(cit71)/*[position()=1]) 2015; 17 Wu (C8CE01677A-(cit13)/*[position()=1]) 2018; 333 Li (C8CE01677A-(cit41)/*[position()=1]) 2009; 19 Qiu (C8CE01677A-(cit26)/*[position()=1]) 2017; 9 Liu (C8CE01677A-(cit60)/*[position()=1]) 2016; 8 Zhao (C8CE01677A-(cit66)/*[position()=1]) 2015; 17 Quan (C8CE01677A-(cit2)/*[position()=1]) 2017; 9 Zhang (C8CE01677A-(cit21)/*[position()=1]) 2015; 27 Liu (C8CE01677A-(cit33)/*[position()=1]) 2017; 5 Cao (C8CE01677A-(cit48)/*[position()=1]) 2013; 52 Tang (C8CE01677A-(cit36)/*[position()=1]) 2008; 473 Zhao (C8CE01677A-(cit3)/*[position()=1]) 2017; 10 Liu (C8CE01677A-(cit8)/*[position()=1]) 2017; 313 Wen (C8CE01677A-(cit79)/*[position()=1]) 2014; 26 Lv (C8CE01677A-(cit1)/*[position()=1]) 2018; 30 Deng (C8CE01677A-(cit37)/*[position()=1]) 2018; 6 Zhang (C8CE01677A-(cit5)/*[position()=1]) 2016; 8 Liu (C8CE01677A-(cit44)/*[position()=1]) 2008; 19 Han (C8CE01677A-(cit25)/*[position()=1]) 2014; 2 Lü (C8CE01677A-(cit64)/*[position()=1]) 2015; 7 Aharoni (C8CE01677A-(cit67)/*[position()=1]) 1991; 69 Wen (C8CE01677A-(cit16)/*[position()=1]) 2014; 16 Lv (C8CE01677A-(cit38)/*[position()=1]) 2015; 7 Chen (C8CE01677A-(cit28)/*[position()=1]) 2010; 405 Song (C8CE01677A-(cit15)/*[position()=1]) 2017; 116 Wang (C8CE01677A-(cit22)/*[position()=1]) 2012; 6 Wang (C8CE01677A-(cit18)/*[position()=1]) 2010; 114 Che (C8CE01677A-(cit65)/*[position()=1]) 2004; 16 Tong (C8CE01677A-(cit12)/*[position()=1]) 2014; 2 Cao (C8CE01677A-(cit32)/*[position()=1]) 2011; 11 Yang (C8CE01677A-(cit52)/*[position()=1]) 2018; 352 Zhao (C8CE01677A-(cit14)/*[position()=1]) 2017; 19 Liu (C8CE01677A-(cit29)/*[position()=1]) 2016; 28 Xia (C8CE01677A-(cit76)/*[position()=1]) 2013; 25 Watts (C8CE01677A-(cit58)/*[position()=1]) 2003; 15 He (C8CE01677A-(cit19)/*[position()=1]) 2012; 22 Xie (C8CE01677A-(cit30)/*[position()=1]) 2017; 5 Zhao (C8CE01677A-(cit50)/*[position()=1]) 2015; 3 Ding (C8CE01677A-(cit69)/*[position()=1]) 2017; 111 Yec (C8CE01677A-(cit49)/*[position()=1]) 2014; 2 Kitakami (C8CE01677A-(cit31)/*[position()=1]) 1997; 56 Lu (C8CE01677A-(cit55)/*[position()=1]) 2016; 27 Lv (C8CE01677A-(cit62)/*[position()=1]) 2016; 8 Liu (C8CE01677A-(cit57)/*[position()=1]) 2016; 4 Tong (C8CE01677A-(cit39)/*[position()=1]) 2012; 14 Ma (C8CE01677A-(cit27)/*[position()=1]) 2010; 96 Wen (C8CE01677A-(cit59)/*[position()=1]) 2013; 65 Chen (C8CE01677A-(cit61)/*[position()=1]) 2009; 106 Wang (C8CE01677A-(cit54)/*[position()=1]) 2014; 2 Wang (C8CE01677A-(cit74)/*[position()=1]) 2014; 2 Zhang (C8CE01677A-(cit42)/*[position()=1]) 2008; 8 Zhao (C8CE01677A-(cit56)/*[position()=1]) 2015; 7 Cao (C8CE01677A-(cit78)/*[position()=1]) 2018; 14 Wei (C8CE01677A-(cit7)/*[position()=1]) 2014; 2 Xu (C8CE01677A-(cit47)/*[position()=1]) 2006; 16 Guan (C8CE01677A-(cit45)/*[position()=1]) 2011; 13 Dang (C8CE01677A-(cit53)/*[position()=1]) 2013; 25 Lv (C8CE01677A-(cit75)/*[position()=1]) 2015; 3 Pan (C8CE01677A-(cit40)/*[position()=1]) 2013; 5 Liu (C8CE01677A-(cit43)/*[position()=1]) 2009; 113 Zhao (C8CE01677A-(cit70)/*[position()=1]) 2017; 19 Zhao (C8CE01677A-(cit46)/*[position()=1]) 2008; 20 Cheng (C8CE01677A-(cit9)/*[position()=1]) 2017; 704 Shi (C8CE01677A-(cit17)/*[position()=1]) 2009; 95 Zhang (C8CE01677A-(cit51)/*[position()=1]) 2015; 7 Xu (C8CE01677A-(cit68)/*[position()=1]) 2018; 139 Wang (C8CE01677A-(cit11)/*[position()=1]) 2015; 7 Liu (C8CE01677A-(cit20)/*[position()=1]) 2011; 110 |
References_xml | – volume: 9 start-page: 11803 year: 2017 ident: C8CE01677A-(cit23)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00951 – volume: 8 start-page: 6529 year: 2016 ident: C8CE01677A-(cit62)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12662 – volume: 28 start-page: 486 year: 2016 ident: C8CE01677A-(cit29)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503149 – volume: 16 start-page: 18333 year: 2014 ident: C8CE01677A-(cit16)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01468E – volume: 13 start-page: 2636 year: 2011 ident: C8CE01677A-(cit45)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c0ce00805b – volume: 30 start-page: 1706343 year: 2018 ident: C8CE01677A-(cit1)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706343 – volume: 704 start-page: 289 year: 2017 ident: C8CE01677A-(cit9)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.02.024 – volume: 20 start-page: 198 year: 2008 ident: C8CE01677A-(cit46)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm702352y – volume: 56 start-page: 13849 year: 1997 ident: C8CE01677A-(cit31)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.56.13849 – volume: 8 start-page: 3206 year: 2008 ident: C8CE01677A-(cit42)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg7010452 – volume: 25 start-page: 6905 year: 2013 ident: C8CE01677A-(cit76)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201303088 – volume: 110 start-page: 033918 year: 2011 ident: C8CE01677A-(cit20)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3622144 – volume: 116 start-page: 50 year: 2017 ident: C8CE01677A-(cit15)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2017.01.077 – volume: 16 start-page: 401 year: 2004 ident: C8CE01677A-(cit65)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200306460 – volume: 333 start-page: 519 year: 2018 ident: C8CE01677A-(cit13)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.174 – volume: 65 start-page: 124 year: 2013 ident: C8CE01677A-(cit59)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2013.07.110 – volume: 2 start-page: 7373 year: 2014 ident: C8CE01677A-(cit12)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c4ta00117f – volume: 2 start-page: 4843 year: 2014 ident: C8CE01677A-(cit49)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14203E – volume: 9 start-page: 7408 year: 2017 ident: C8CE01677A-(cit26)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR02628E – volume: 6 start-page: 7128 year: 2018 ident: C8CE01677A-(cit37)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02520G – volume: 7 start-page: 12932 year: 2015 ident: C8CE01677A-(cit51)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR03176A – volume: 5 start-page: 12716 year: 2013 ident: C8CE01677A-(cit40)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404117v – volume: 8 start-page: 3494 year: 2016 ident: C8CE01677A-(cit5)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12203 – volume: 5 start-page: 5865 year: 2017 ident: C8CE01677A-(cit33)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10591B – volume: 19 start-page: 5207 year: 2009 ident: C8CE01677A-(cit41)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b907048f – volume: 15 start-page: 600 year: 2003 ident: C8CE01677A-(cit58)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200304485 – volume: 4 start-page: 40456 year: 2014 ident: C8CE01677A-(cit73)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA05716C – volume: 19 start-page: 9128 year: 2017 ident: C8CE01677A-(cit77)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00629B – volume: 3 start-page: 7677 year: 2015 ident: C8CE01677A-(cit10)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC01716E – volume: 19 start-page: 365608 year: 2008 ident: C8CE01677A-(cit44)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/19/36/365608 – volume: 26 start-page: 3484 year: 2014 ident: C8CE01677A-(cit79)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400108 – volume: 14 start-page: 1800987 year: 2018 ident: C8CE01677A-(cit78)/*[position()=1] publication-title: Small doi: 10.1002/smll.201800987 – volume: 52 start-page: 10986 year: 2013 ident: C8CE01677A-(cit48)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201305819 – volume: 3 start-page: 10345 year: 2015 ident: C8CE01677A-(cit50)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00086F – volume: 2 start-page: 5516 year: 2014 ident: C8CE01677A-(cit7)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00010B – volume: 11 start-page: 472 year: 2011 ident: C8CE01677A-(cit32)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg101254k – volume: 2 start-page: 16403 year: 2014 ident: C8CE01677A-(cit25)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03033H – volume: 19 start-page: 2178 year: 2017 ident: C8CE01677A-(cit14)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C7CE00235A – volume: 22 start-page: 21679 year: 2012 ident: C8CE01677A-(cit24)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm34273a – volume: 7 start-page: 13604 year: 2015 ident: C8CE01677A-(cit64)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03177 – volume: 69 start-page: 7762 year: 1991 ident: C8CE01677A-(cit67)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.347502 – volume: 5 start-page: 2175 year: 2017 ident: C8CE01677A-(cit30)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05057C – volume: 17 start-page: 2531 year: 2015 ident: C8CE01677A-(cit66)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05031B – volume: 8 start-page: 22615 year: 2016 ident: C8CE01677A-(cit60)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05480 – volume: 113 start-page: 3436 year: 2009 ident: C8CE01677A-(cit43)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp8081744 – volume: 2 start-page: 3769 year: 2014 ident: C8CE01677A-(cit74)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00108G – volume: 139 start-page: 759 year: 2018 ident: C8CE01677A-(cit68)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2018.07.044 – volume: 14 start-page: 2071 year: 2012 ident: C8CE01677A-(cit39)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c2ce05910j – volume: 405 start-page: 1484 year: 2010 ident: C8CE01677A-(cit28)/*[position()=1] publication-title: Phys. B doi: 10.1016/j.physb.2009.12.026 – volume: 106 start-page: 054303 year: 2009 ident: C8CE01677A-(cit61)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3204958 – volume: 27 start-page: 2049 year: 2015 ident: C8CE01677A-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405788 – volume: 111 start-page: 722 year: 2017 ident: C8CE01677A-(cit69)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.10.059 – volume: 3 start-page: 10017 year: 2015 ident: C8CE01677A-(cit80)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02185E – volume: 3 start-page: 10232 year: 2015 ident: C8CE01677A-(cit75)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02512E – volume: 19 start-page: 6095 year: 2017 ident: C8CE01677A-(cit70)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C7CE01464C – volume: 95 start-page: 163108 year: 2009 ident: C8CE01677A-(cit17)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3250170 – volume: 114 start-page: 14826 year: 2010 ident: C8CE01677A-(cit18)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp1050386 – volume: 6 start-page: 11009 year: 2012 ident: C8CE01677A-(cit22)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn304630h – volume: 96 start-page: 202507 year: 2010 ident: C8CE01677A-(cit27)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3432441 – volume: 10 start-page: 331 year: 2017 ident: C8CE01677A-(cit3)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-016-1295-3 – volume: 8 start-page: 28917 year: 2016 ident: C8CE01677A-(cit6)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10886 – volume: 22 start-page: 22160 year: 2012 ident: C8CE01677A-(cit19)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm33068g – volume: 313 start-page: 734 year: 2017 ident: C8CE01677A-(cit8)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.117 – volume: 7 start-page: 9776 year: 2015 ident: C8CE01677A-(cit38)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01654 – volume: 4 start-page: 1727 year: 2016 ident: C8CE01677A-(cit57)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC03874J – volume: 9 start-page: 9964 year: 2017 ident: C8CE01677A-(cit2)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15788 – volume: 7 start-page: 19408 year: 2015 ident: C8CE01677A-(cit63)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05595 – volume: 2 start-page: 5216 year: 2014 ident: C8CE01677A-(cit4)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/c4tc00739e – volume: 16 start-page: 903 year: 2006 ident: C8CE01677A-(cit47)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500716 – volume: 2 start-page: 14940 year: 2014 ident: C8CE01677A-(cit54)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02815E – volume: 7 start-page: 12951 year: 2015 ident: C8CE01677A-(cit56)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02716 – volume: 509 start-page: 406 year: 2018 ident: C8CE01677A-(cit34)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.09.029 – volume: 6 start-page: 2447 year: 2014 ident: C8CE01677A-(cit35)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr05238a – volume: 7 start-page: 7189 year: 2015 ident: C8CE01677A-(cit11)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR06978A – volume: 473 start-page: 68 year: 2008 ident: C8CE01677A-(cit36)/*[position()=1] publication-title: Thermochim. Acta doi: 10.1016/j.tca.2008.04.015 – volume: 27 start-page: 065702 year: 2016 ident: C8CE01677A-(cit55)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/27/6/065702 – volume: 17 start-page: 3796 year: 2015 ident: C8CE01677A-(cit71)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04985C – volume: 25 start-page: 6334 year: 2013 ident: C8CE01677A-(cit53)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201301752 – volume: 116 start-page: 054310 year: 2014 ident: C8CE01677A-(cit72)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4892446 – volume: 352 start-page: 510 year: 2018 ident: C8CE01677A-(cit52)/*[position()=1] publication-title: Chem. – Eur. J. |
SSID | ssj0014110 |
Score | 2.5099318 |
Snippet | Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared
via
a simple polyol reduction approach. The effects of... Symmetrical polyhedron-bowl (twin-hexagonal frustum-pyramid) structured Co/CoO products were prepared via a simple polyol reduction approach. The effects of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 816 |
SubjectTerms | Composite materials Current loss Electromagnetic radiation Leakage current Microwave absorption Morphology Paraffins Plates (structural members) Polyhedra Reflection Thickness |
Title | Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability |
URI | https://www.proquest.com/docview/2171613807 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9NAEIdXNL3AAfGqCC1oJbigytT2rh89BiuoIB4HUqmcLO_DaavEjhxXafjrmfGuHy1FAnJworWdw37r2dnx_mYIeSNjgB67wol9FcMCJWb4zOVOyCKpIhVkIkI18pev4ckp_3QWnLUl4a26pBbv5M87dSX_QxXagCuqZP-BbPen0AC_gS8cgTAc_4rx9-1yiRWxsJ9X5WJ7rlVVFo4oNxgRwNS35TcTaT3X19m8CfqtFuBdoscJ3irumD20hXCW2bxAQePhBusRZWJdVsaamETeN97-JtV2XU-LOapLBpHnJur6_iIru10-zVaBH5mdHZuWK6MFKTb6ohs7Vv9gW2wMwto4bSwmDzGjsclm0ZpUI3q2QycY2MfYC4dTrRHL_2bFXYZJUGUsNYokosFc1e0g7E_ukF0flgj-iOxOprOPn7t3SBw8mzYhLTs-6u-46YL064qdqi360jgXs0fkoV0V0IlB_Jjc08UT8mCQK_IpuRzAprdg06Q8AtQUUdMONW1Q07qkFjW9hZoiatqjphb1M3L6YTpLThxbKMORYJJrR7HMU5EOQ-kKxX0Oq1RXRX6sBAu5zJXwZciY6-Ze7npSMynhgozxjGv4gs8eGRVloZ8TGjAhuCcYx6rkbp6JQLNIcHD0eCQ8zcfkbdt3qbRZ5LGYySJtdjOw4zSJk2nTz5Mxed1duzK5U-686qBFkNpna536mMXJw2IIY7IHWLr7e4ov_nRin9zHMWriZAdkVFdX-iV4jrV4ZYfIL-d4dKo |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetrical+polyhedron-bowl+Co%2FCoO+with+hexagonal+plate+to+forward+electromagnetic+wave+absorption+ability&rft.jtitle=CrystEngComm&rft.au=Zhao%2C+Biao&rft.au=Li%2C+Yang&rft.au=Liu%2C+Junwei&rft.au=Fan%2C+Lei&rft.date=2019&rft.eissn=1466-8033&rft.volume=21&rft.issue=5&rft.spage=816&rft.epage=826&rft_id=info:doi/10.1039%2Fc8ce01677a&rft.externalDocID=c8ce01677a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |