Purification by SPS and formation of a unique 3D nanoscale network: the showcase of Ni-Cr-S

The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sin...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 7; no. 48; pp. 15188 - 15196
Main Authors Groß, H, Dankwort, T, Hansen, A.-L, Schürmann, U, Duppel, V, Poschmann, M, Meingast, A, Groeneveld, D, König, J, Bensch, W, Kienle, L
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sintering process. The obtained samples showed a network of chemically segregated domains being either Ni rich and Cr deficient or vice versa . These domains could be proven to intergrow fully coherently in 3D, thus establishing a unique microstructure. Electron beam irradiation caused the initial Cr 3 S 4 -type structures to transform into the disordered NiAs-type. The disordering is characterised by significant short-range ordering as indicated by the appearance of prominent diffuse scattering. Thermoelectric characterisation at room temperature indicated an n-type semiconductor behaviour with thermal and electrical conductivities similar to usual thermoelectric materials, however with a low Seebeck coefficient and a low power factor of 49.3 μW m −1 K −2 . The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques.
AbstractList The occurrence of a unique 3D nanoscale network in Ni–Cr–S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sintering process. The obtained samples showed a network of chemically segregated domains being either Ni rich and Cr deficient or vice versa. These domains could be proven to intergrow fully coherently in 3D, thus establishing a unique microstructure. Electron beam irradiation caused the initial Cr3S4-type structures to transform into the disordered NiAs-type. The disordering is characterised by significant short-range ordering as indicated by the appearance of prominent diffuse scattering. Thermoelectric characterisation at room temperature indicated an n-type semiconductor behaviour with thermal and electrical conductivities similar to usual thermoelectric materials, however with a low Seebeck coefficient and a low power factor of 49.3 μW m−1 K−2.
The occurrence of a unique 3D nanoscale network in Ni–Cr–S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sintering process. The obtained samples showed a network of chemically segregated domains being either Ni rich and Cr deficient or vice versa . These domains could be proven to intergrow fully coherently in 3D, thus establishing a unique microstructure. Electron beam irradiation caused the initial Cr 3 S 4 -type structures to transform into the disordered NiAs-type. The disordering is characterised by significant short-range ordering as indicated by the appearance of prominent diffuse scattering. Thermoelectric characterisation at room temperature indicated an n-type semiconductor behaviour with thermal and electrical conductivities similar to usual thermoelectric materials, however with a low Seebeck coefficient and a low power factor of 49.3 μW m −1 K −2 .
The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sintering process. The obtained samples showed a network of chemically segregated domains being either Ni rich and Cr deficient or vice versa . These domains could be proven to intergrow fully coherently in 3D, thus establishing a unique microstructure. Electron beam irradiation caused the initial Cr 3 S 4 -type structures to transform into the disordered NiAs-type. The disordering is characterised by significant short-range ordering as indicated by the appearance of prominent diffuse scattering. Thermoelectric characterisation at room temperature indicated an n-type semiconductor behaviour with thermal and electrical conductivities similar to usual thermoelectric materials, however with a low Seebeck coefficient and a low power factor of 49.3 μW m −1 K −2 . The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques.
Author Hansen, A.-L
König, J
Poschmann, M
Dankwort, T
Duppel, V
Kienle, L
Groß, H
Meingast, A
Groeneveld, D
Schürmann, U
Bensch, W
AuthorAffiliation Fraunhofer Institute for Physical Measurement Techniques IPM
Max Planck Institute for Solid State Research
Institute for Inorganic Chemistry
Thermo Fisher Scientific
University of Freiburg
Institute for Materials Science
Kiel University
IMTEK - Department of Microsystems Engineering
AuthorAffiliation_xml – sequence: 0
  name: Max Planck Institute for Solid State Research
– sequence: 0
  name: University of Freiburg
– sequence: 0
  name: Thermo Fisher Scientific
– sequence: 0
  name: Kiel University
– sequence: 0
  name: IMTEK - Department of Microsystems Engineering
– sequence: 0
  name: Institute for Materials Science
– sequence: 0
  name: Institute for Inorganic Chemistry
– sequence: 0
  name: Fraunhofer Institute for Physical Measurement Techniques IPM
Author_xml – sequence: 1
  givenname: H
  surname: Groß
  fullname: Groß, H
– sequence: 2
  givenname: T
  surname: Dankwort
  fullname: Dankwort, T
– sequence: 3
  givenname: A.-L
  surname: Hansen
  fullname: Hansen, A.-L
– sequence: 4
  givenname: U
  surname: Schürmann
  fullname: Schürmann, U
– sequence: 5
  givenname: V
  surname: Duppel
  fullname: Duppel, V
– sequence: 6
  givenname: M
  surname: Poschmann
  fullname: Poschmann, M
– sequence: 7
  givenname: A
  surname: Meingast
  fullname: Meingast, A
– sequence: 8
  givenname: D
  surname: Groeneveld
  fullname: Groeneveld, D
– sequence: 9
  givenname: J
  surname: König
  fullname: König, J
– sequence: 10
  givenname: W
  surname: Bensch
  fullname: Bensch, W
– sequence: 11
  givenname: L
  surname: Kienle
  fullname: Kienle, L
BookMark eNptkc9LwzAUx4NMcM5dvAsBb0I1TdY08TbqTxg62Dx5KGmasMwtmUnK2H9vt4qC-C7v8fh8389T0LPOKgDOU3SdIsJvJI8SjbIRE0egj1GGkjwjo95PjOkJGIawRK2xlDLK--B92nijjRTROAurHZxNZ1DYGmrn113SaShgY81noyC5g1ZYF6RYKWhV3Dr_cQvjQsGwcFspgtrjLyYpfDI7A8darIIafvsBeHu4nxdPyeT18bkYTxJJUhaTSmFGFUmrDEmm61zXdc01RrRivCIol5pkjOF2L8q5FjXjOqeZGqkqzXFNMBmAy67uxrt2yBDLpWu8bVuWmOBWhnJKWwp1lPQuBK90KU08bBi9MKsyReX-imXB58XhiuNWcvVHsvFmLfzuf_iig32QP9zvS8gXnnB8pw
CitedBy_id crossref_primary_10_1002_adem_202100828
crossref_primary_10_1016_j_jmrt_2023_05_145
crossref_primary_10_1021_acsomega_1c01412
crossref_primary_10_1002_adem_202201505
crossref_primary_10_1002_adma_202101576
Cites_doi 10.1021/cg3013443
10.1016/0022-1902(69)80055-2
10.1016/0022-3697(66)90227-7
10.1038/nmat2090
10.1007/s11664-011-1578-0
10.1126/science.1136494
10.1524/zkri.217.10.510.20789
10.1016/0038-1098(69)90402-5
10.1039/C6TC05197A
10.1021/ja903362b
10.1103/PhysRevLett.104.018301
10.1016/0022-3697(71)90007-2
10.1021/ic3027094
10.1107/S1600576717016879
10.1016/j.ssi.2004.01.047
10.1039/a702814h
10.1016/S0304-3991(98)00035-7
10.1021/acsami.5b01617
10.1002/adem.201100209
10.1107/S1600577515002283
10.1016/0038-1098(66)90120-7
10.1524/zkri.220.2.231.59119
10.1107/S0021889813005190
10.1007/978-3-662-04569-5
10.1107/S0567739476000508
10.1021/cm702223s
10.1002/zaac.19372340408
10.1103/PhysRevB.71.125120
10.1039/C7TC02983G
10.1016/0022-4596(73)90010-8
10.1088/1468-6996/13/5/053003
10.1107/S0365110X57002200
10.1016/S1359-6454(02)00467-6
10.1002/ange.200900598
10.1002/adfm.201302899
10.1016/S0921-4526(99)01423-4
10.1038/35098012
10.1007/s11664-013-2941-0
10.1002/pssc.200669659
10.1016/j.mattod.2015.10.004
10.1021/ja071875h
10.1016/j.ultramic.2005.02.003
10.1021/cm5031574
10.1016/0022-4596(79)90096-3
10.1039/a904492b
10.1201/9781420049718
10.1038/srep23143
10.1021/ic50073a032
10.1146/annurev-matsci-062910-100445
10.1515/znb-1970-0319
10.1039/C4DT03425B
10.1007/s10853-006-6555-2
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/c9tc04548a
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 15196
ExternalDocumentID 10_1039_C9TC04548A
c9tc04548a
GroupedDBID -JG
0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c318t-be286e31b50c8fd7fddd9f206b89b307cf35882548699fad89f765e4eb172d323
ISSN 2050-7526
IngestDate Mon Jun 30 05:22:45 EDT 2025
Tue Jul 01 02:08:59 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Tue Dec 17 20:59:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-be286e31b50c8fd7fddd9f206b89b307cf35882548699fad89f765e4eb172d323
Notes 10.1039/c9tc04548a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4530-7420
0000-0002-3111-580X
0000-0003-1804-6878
PQID 2324860766
PQPubID 2047521
PageCount 9
ParticipantIDs proquest_journals_2324860766
crossref_primary_10_1039_C9TC04548A
crossref_citationtrail_10_1039_C9TC04548A
rsc_primary_c9tc04548a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Pisharody (C9TC04548A-(cit17)/*[position()=1]) 1979; 30
Vaqueiro (C9TC04548A-(cit19)/*[position()=1]) 2000; 276–278
Ge (C9TC04548A-(cit1)/*[position()=1]) 2016; 19
Jellinek (C9TC04548A-(cit26)/*[position()=1]) 1957; 10
Nolas (C9TC04548A-(cit52)/*[position()=1]) 2001
Venkatasubramanian (C9TC04548A-(cit3)/*[position()=1]) 2001; 413
Mitchell (C9TC04548A-(cit45)/*[position()=1]) 2005; 103
Vensky (C9TC04548A-(cit48)/*[position()=1]) 2005; 220
König (C9TC04548A-(cit5)/*[position()=1]) 2011; 40
Engin (C9TC04548A-(cit8)/*[position()=1]) 2008; 20
Shakouri (C9TC04548A-(cit39)/*[position()=1]) 2011; 41
Schürmann (C9TC04548A-(cit6)/*[position()=1]) 2012; 14
Morris (C9TC04548A-(cit14)/*[position()=1]) 1969; 7
Sootsman (C9TC04548A-(cit22)/*[position()=1]) 2009; 121
Heinz (C9TC04548A-(cit38)/*[position()=1]) 2014; 24
Holt (C9TC04548A-(cit23)/*[position()=1]) 1966; 4
Vaqueiro (C9TC04548A-(cit47)/*[position()=1]) 1999; 9
Munir (C9TC04548A-(cit37)/*[position()=1]) 2006; 41
Holt (C9TC04548A-(cit27)/*[position()=1]) 1966; 27
Colgan (C9TC04548A-(cit29)/*[position()=1]) 1997; 7
Basham (C9TC04548A-(cit42)/*[position()=1]) 2015; 22
Beekman (C9TC04548A-(cit33)/*[position()=1]) 2009; 131
Juhás (C9TC04548A-(cit44)/*[position()=1]) 2013; 46
Maignan (C9TC04548A-(cit21)/*[position()=1]) 2012; 13
Rowe (C9TC04548A-(cit2)/*[position()=1]) 1995
Hansen (C9TC04548A-(cit18)/*[position()=1]) 2017; 5
Powell (C9TC04548A-(cit9)/*[position()=1]) 2004; 172
Chiu (C9TC04548A-(cit30)/*[position()=1]) 2016; 6
Kaltzoglou (C9TC04548A-(cit51)/*[position()=1]) 2014; 43
Lovasz (C9TC04548A-(cit10)/*[position()=1]) 1970; 25b
Tsujii (C9TC04548A-(cit25)/*[position()=1]) 2006; 3
Chiritescu (C9TC04548A-(cit4)/*[position()=1]) 2007; 315
Beekman (C9TC04548A-(cit32)/*[position()=1]) 2010; 104
Du (C9TC04548A-(cit31)/*[position()=1]) 2017; 5
König (C9TC04548A-(cit36)/*[position()=1]) 2015; 44
Wei (C9TC04548A-(cit41)/*[position()=1]) 2015; 7
de Ridder (C9TC04548A-(cit50)/*[position()=1]) 1976; A32
Popma (C9TC04548A-(cit12)/*[position()=1]) 1969; 31
Coelho (C9TC04548A-(cit43)/*[position()=1]) 2018; 51
Stefanoski (C9TC04548A-(cit34)/*[position()=1]) 2013; 131
Popma (C9TC04548A-(cit13)/*[position()=1]) 1971; 32
Hytch (C9TC04548A-(cit46)/*[position()=1]) 1998; 74
Androulakis (C9TC04548A-(cit40)/*[position()=1]) 2007; 129
Sleight (C9TC04548A-(cit16)/*[position()=1]) 1969; 8
Snyder (C9TC04548A-(cit20)/*[position()=1]) 2008; 7
Hansen (C9TC04548A-(cit7)/*[position()=1]) 2014; 26
Babot (C9TC04548A-(cit28)/*[position()=1]) 1973; 8
Bensch (C9TC04548A-(cit15)/*[position()=1]) 2002; 217
Veremchuk (C9TC04548A-(cit35)/*[position()=1]) 2013; 52
Haraldsen (C9TC04548A-(cit11)/*[position()=1]) 1937; 234
Powell (C9TC04548A-(cit24)/*[position()=1]) 2005; 71
Castellanos Román (C9TC04548A-(cit49)/*[position()=1]) 2003; 51
References_xml – issn: 1995
  publication-title: CRC Handbook of Thermoelectrics
  doi: Rowe
– issn: 2001
  publication-title: Thermoelectrics - Basic Principles and New Material Developments
  doi: Nolas Sharp Goldsmid
– volume: 131
  start-page: 195
  issue: 1
  year: 2013
  ident: C9TC04548A-(cit34)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg3013443
– volume: 31
  start-page: 73
  year: 1969
  ident: C9TC04548A-(cit12)/*[position()=1]
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(69)80055-2
– volume: 27
  start-page: 755
  year: 1966
  ident: C9TC04548A-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(66)90227-7
– volume: 7
  start-page: 105
  year: 2008
  ident: C9TC04548A-(cit20)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2090
– volume: 40
  start-page: 1266
  year: 2011
  ident: C9TC04548A-(cit5)/*[position()=1]
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-011-1578-0
– volume: 315
  start-page: 351
  year: 2007
  ident: C9TC04548A-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1136494
– volume: 217
  start-page: 510
  year: 2002
  ident: C9TC04548A-(cit15)/*[position()=1]
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.217.10.510.20789
– volume: 7
  start-page: 291
  year: 1969
  ident: C9TC04548A-(cit14)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(69)90402-5
– volume: 5
  start-page: 1514
  year: 2017
  ident: C9TC04548A-(cit31)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05197A
– volume: 131
  start-page: 9642
  issue: 28
  year: 2009
  ident: C9TC04548A-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903362b
– volume: 104
  start-page: 018301
  year: 2010
  ident: C9TC04548A-(cit32)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.018301
– volume: 32
  start-page: 581
  year: 1971
  ident: C9TC04548A-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(71)90007-2
– volume: 52
  start-page: 4458
  issue: 8
  year: 2013
  ident: C9TC04548A-(cit35)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic3027094
– volume: 51
  start-page: 1
  year: 2018
  ident: C9TC04548A-(cit43)/*[position()=1]
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576717016879
– volume: 172
  start-page: 469
  year: 2004
  ident: C9TC04548A-(cit9)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.01.047
– volume: 7
  start-page: 2433
  year: 1997
  ident: C9TC04548A-(cit29)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/a702814h
– volume: 74
  start-page: 131
  year: 1998
  ident: C9TC04548A-(cit46)/*[position()=1]
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(98)00035-7
– volume: 7
  start-page: 9752
  issue: 18
  year: 2015
  ident: C9TC04548A-(cit41)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01617
– volume: 14
  start-page: 139
  year: 2012
  ident: C9TC04548A-(cit6)/*[position()=1]
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201100209
– volume: 22
  start-page: 853
  year: 2015
  ident: C9TC04548A-(cit42)/*[position()=1]
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577515002283
– volume: 4
  start-page: iv
  year: 1966
  ident: C9TC04548A-(cit23)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(66)90120-7
– volume: 220
  start-page: 231
  year: 2005
  ident: C9TC04548A-(cit48)/*[position()=1]
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.220.2.231.59119
– volume: 46
  start-page: 560
  year: 2013
  ident: C9TC04548A-(cit44)/*[position()=1]
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889813005190
– volume-title: Thermoelectrics – Basic Principles and New Material Developments
  year: 2001
  ident: C9TC04548A-(cit52)/*[position()=1]
  doi: 10.1007/978-3-662-04569-5
– volume: A32
  start-page: 216
  year: 1976
  ident: C9TC04548A-(cit50)/*[position()=1]
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0567739476000508
– volume: 20
  start-page: 2039
  year: 2008
  ident: C9TC04548A-(cit8)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm702223s
– volume: 234
  start-page: 372
  year: 1937
  ident: C9TC04548A-(cit11)/*[position()=1]
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.19372340408
– volume: 71
  start-page: 125120
  year: 2005
  ident: C9TC04548A-(cit24)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.71.125120
– volume: 5
  start-page: 9331
  year: 2017
  ident: C9TC04548A-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02983G
– volume: 8
  start-page: 166
  year: 1973
  ident: C9TC04548A-(cit28)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(73)90010-8
– volume: 13
  start-page: 53003
  year: 2012
  ident: C9TC04548A-(cit21)/*[position()=1]
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/13/5/053003
– volume: 10
  start-page: 620
  year: 1957
  ident: C9TC04548A-(cit26)/*[position()=1]
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X57002200
– volume: 51
  start-page: 2125
  year: 2003
  ident: C9TC04548A-(cit49)/*[position()=1]
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00467-6
– volume: 121
  start-page: 8768
  year: 2009
  ident: C9TC04548A-(cit22)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200900598
– volume: 24
  start-page: 2135
  year: 2014
  ident: C9TC04548A-(cit38)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302899
– volume: 276–278
  start-page: 238
  year: 2000
  ident: C9TC04548A-(cit19)/*[position()=1]
  publication-title: Physica B
  doi: 10.1016/S0921-4526(99)01423-4
– volume: 413
  start-page: 597
  year: 2001
  ident: C9TC04548A-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35098012
– volume: 43
  start-page: 2029
  year: 2014
  ident: C9TC04548A-(cit51)/*[position()=1]
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-013-2941-0
– volume: 3
  start-page: 2775
  year: 2006
  ident: C9TC04548A-(cit25)/*[position()=1]
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssc.200669659
– volume: 19
  start-page: 4
  year: 2016
  ident: C9TC04548A-(cit1)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.10.004
– volume: 129
  start-page: 9780
  year: 2007
  ident: C9TC04548A-(cit40)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071875h
– volume: 103
  start-page: 319
  year: 2005
  ident: C9TC04548A-(cit45)/*[position()=1]
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2005.02.003
– volume: 26
  start-page: 6518
  issue: 22
  year: 2014
  ident: C9TC04548A-(cit7)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm5031574
– volume: 30
  start-page: 149
  year: 1979
  ident: C9TC04548A-(cit17)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(79)90096-3
– volume: 9
  start-page: 2859
  year: 1999
  ident: C9TC04548A-(cit47)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/a904492b
– volume-title: CRC Handbook of Thermoelectrics
  year: 1995
  ident: C9TC04548A-(cit2)/*[position()=1]
  doi: 10.1201/9781420049718
– volume: 6
  start-page: 23143
  year: 2016
  ident: C9TC04548A-(cit30)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep23143
– volume: 8
  start-page: 566
  year: 1969
  ident: C9TC04548A-(cit16)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50073a032
– volume: 41
  start-page: 399
  year: 2011
  ident: C9TC04548A-(cit39)/*[position()=1]
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-062910-100445
– volume: 25b
  start-page: 313
  year: 1970
  ident: C9TC04548A-(cit10)/*[position()=1]
  publication-title: Z. Naturforsch.
  doi: 10.1515/znb-1970-0319
– volume: 44
  start-page: 2835
  year: 2015
  ident: C9TC04548A-(cit36)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT03425B
– volume: 41
  start-page: 763
  year: 2006
  ident: C9TC04548A-(cit37)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-6555-2
SSID ssj0000816869
Score 2.21562
Snippet The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and...
The occurrence of a unique 3D nanoscale network in Ni–Cr–S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and...
The occurrence of a unique 3D nanoscale network in Ni–Cr–S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15188
SubjectTerms Domains
Electron beams
Electron irradiation
N-type semiconductors
Organic chemistry
Plasma sintering
Power factor
Room temperature
Seebeck effect
Spark plasma sintering
Thermoelectric materials
Title Purification by SPS and formation of a unique 3D nanoscale network: the showcase of Ni-Cr-S
URI https://www.proquest.com/docview/2324860766
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZpymB9GFu30nTdEGwvIzhzLMuXvWVuSza2UkgChT0ESZboYNglcRjbD9nv3dHFisNa2PZiHEkRib7PR0fH54LQayHHVACVAp5QEcQ5oQGPlfYRi7mIY1ZGYx07_PkymS7ij9f0utf71fFa2jR8JH7eGVfyP6hCG-Cqo2T_AVk_KTTAPeALV0AYrn-F8dVmpT19LIagR86uZuZlgI9ItNGPG5uklZwNK1bVa0BFDivr_t26daxv6u-CWbv-5degWAWze9RWmNj-taFoa8WNhoUN-2l7tOtifdv4RASdWjulNKJp6_ZT61f1-cVOnARQ0dSt3nHinrLKWYsmo8CbrGfiRk_wvtDBD6Z30TVkOEFpJF0U0jBIaeRyYnfbnKXTieq0w0iboNPJ3bHOK9fZxOGzLZT7xw4REp1gVeSN0MkHs84-6L0Tt517aD-C40fUR_uT8_mHT956Z8qVmHqJ_re3uW9J_nY7wa62sz3C7K3a-jJGj5k_Ro8cknhi2fQE9WR1iA46aSkP0QPjFizWT9GXLsMw_4GBYRgQxZ5huFaYYcswTM6wZxh2DHuHgV-45Zce7vj1DC0uzufFNHDlOAIBgr8JuIyyRJIxp6HIVJmqsixzFYUJz3IOW4VQhGba4AALkytWZrlKEypj0AbSqCQROUL9qq7kMcKCMq6IDFnEWAzzMJERJssURqVKKTpAb9plWwqXq16XTPm2ND4TJF8W-bwwSzwZoFd-7K3N0HLnqNN29ZfuCV4v9WkiS8I0SQboCBDx398CeHJfx3P0UJPYWuNOUb9ZbeQL0E8b_tKR5Tf2SY_n
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Purification+by+SPS+and+formation+of+a+unique+3D+nanoscale+network%3A+the+showcase+of+Ni-Cr-S&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Gro%C3%9F%2C+H&rft.au=Dankwort%2C+T&rft.au=Hansen%2C+A.-L&rft.au=Sch%C3%BCrmann%2C+U&rft.date=2019&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=48&rft.spage=15188&rft.epage=15196&rft_id=info:doi/10.1039%2Fc9tc04548a&rft.externalDocID=c9tc04548a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon