Purification by SPS and formation of a unique 3D nanoscale network: the showcase of Ni-Cr-S
The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sin...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 7; no. 48; pp. 15188 - 15196 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated
via
spark-plasma sintering, was discovered with a variety of
ex situ
and
in situ
TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sintering process. The obtained samples showed a network of chemically segregated domains being either Ni rich and Cr deficient or
vice versa
. These domains could be proven to intergrow fully coherently in 3D, thus establishing a unique microstructure. Electron beam irradiation caused the initial Cr
3
S
4
-type structures to transform into the disordered NiAs-type. The disordering is characterised by significant short-range ordering as indicated by the appearance of prominent diffuse scattering. Thermoelectric characterisation at room temperature indicated an n-type semiconductor behaviour with thermal and electrical conductivities similar to usual thermoelectric materials, however with a low Seebeck coefficient and a low power factor of 49.3 μW m
−1
K
−2
.
The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated
via
spark-plasma sintering, was discovered with a variety of
ex situ
and
in situ
TEM and XRD techniques. |
---|---|
AbstractList | The occurrence of a unique 3D nanoscale network in Ni–Cr–S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sintering process. The obtained samples showed a network of chemically segregated domains being either Ni rich and Cr deficient or vice versa. These domains could be proven to intergrow fully coherently in 3D, thus establishing a unique microstructure. Electron beam irradiation caused the initial Cr3S4-type structures to transform into the disordered NiAs-type. The disordering is characterised by significant short-range ordering as indicated by the appearance of prominent diffuse scattering. Thermoelectric characterisation at room temperature indicated an n-type semiconductor behaviour with thermal and electrical conductivities similar to usual thermoelectric materials, however with a low Seebeck coefficient and a low power factor of 49.3 μW m−1 K−2. The occurrence of a unique 3D nanoscale network in Ni–Cr–S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sintering process. The obtained samples showed a network of chemically segregated domains being either Ni rich and Cr deficient or vice versa . These domains could be proven to intergrow fully coherently in 3D, thus establishing a unique microstructure. Electron beam irradiation caused the initial Cr 3 S 4 -type structures to transform into the disordered NiAs-type. The disordering is characterised by significant short-range ordering as indicated by the appearance of prominent diffuse scattering. Thermoelectric characterisation at room temperature indicated an n-type semiconductor behaviour with thermal and electrical conductivities similar to usual thermoelectric materials, however with a low Seebeck coefficient and a low power factor of 49.3 μW m −1 K −2 . The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. The starting material, consisting of a heterogeneous mixture of different phases, could be purified upon application of the sintering process. The obtained samples showed a network of chemically segregated domains being either Ni rich and Cr deficient or vice versa . These domains could be proven to intergrow fully coherently in 3D, thus establishing a unique microstructure. Electron beam irradiation caused the initial Cr 3 S 4 -type structures to transform into the disordered NiAs-type. The disordering is characterised by significant short-range ordering as indicated by the appearance of prominent diffuse scattering. Thermoelectric characterisation at room temperature indicated an n-type semiconductor behaviour with thermal and electrical conductivities similar to usual thermoelectric materials, however with a low Seebeck coefficient and a low power factor of 49.3 μW m −1 K −2 . The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and XRD techniques. |
Author | Hansen, A.-L König, J Poschmann, M Dankwort, T Duppel, V Kienle, L Groß, H Meingast, A Groeneveld, D Schürmann, U Bensch, W |
AuthorAffiliation | Fraunhofer Institute for Physical Measurement Techniques IPM Max Planck Institute for Solid State Research Institute for Inorganic Chemistry Thermo Fisher Scientific University of Freiburg Institute for Materials Science Kiel University IMTEK - Department of Microsystems Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Max Planck Institute for Solid State Research – sequence: 0 name: University of Freiburg – sequence: 0 name: Thermo Fisher Scientific – sequence: 0 name: Kiel University – sequence: 0 name: IMTEK - Department of Microsystems Engineering – sequence: 0 name: Institute for Materials Science – sequence: 0 name: Institute for Inorganic Chemistry – sequence: 0 name: Fraunhofer Institute for Physical Measurement Techniques IPM |
Author_xml | – sequence: 1 givenname: H surname: Groß fullname: Groß, H – sequence: 2 givenname: T surname: Dankwort fullname: Dankwort, T – sequence: 3 givenname: A.-L surname: Hansen fullname: Hansen, A.-L – sequence: 4 givenname: U surname: Schürmann fullname: Schürmann, U – sequence: 5 givenname: V surname: Duppel fullname: Duppel, V – sequence: 6 givenname: M surname: Poschmann fullname: Poschmann, M – sequence: 7 givenname: A surname: Meingast fullname: Meingast, A – sequence: 8 givenname: D surname: Groeneveld fullname: Groeneveld, D – sequence: 9 givenname: J surname: König fullname: König, J – sequence: 10 givenname: W surname: Bensch fullname: Bensch, W – sequence: 11 givenname: L surname: Kienle fullname: Kienle, L |
BookMark | eNptkc9LwzAUx4NMcM5dvAsBb0I1TdY08TbqTxg62Dx5KGmasMwtmUnK2H9vt4qC-C7v8fh8389T0LPOKgDOU3SdIsJvJI8SjbIRE0egj1GGkjwjo95PjOkJGIawRK2xlDLK--B92nijjRTROAurHZxNZ1DYGmrn113SaShgY81noyC5g1ZYF6RYKWhV3Dr_cQvjQsGwcFspgtrjLyYpfDI7A8darIIafvsBeHu4nxdPyeT18bkYTxJJUhaTSmFGFUmrDEmm61zXdc01RrRivCIol5pkjOF2L8q5FjXjOqeZGqkqzXFNMBmAy67uxrt2yBDLpWu8bVuWmOBWhnJKWwp1lPQuBK90KU08bBi9MKsyReX-imXB58XhiuNWcvVHsvFmLfzuf_iig32QP9zvS8gXnnB8pw |
CitedBy_id | crossref_primary_10_1002_adem_202100828 crossref_primary_10_1016_j_jmrt_2023_05_145 crossref_primary_10_1021_acsomega_1c01412 crossref_primary_10_1002_adem_202201505 crossref_primary_10_1002_adma_202101576 |
Cites_doi | 10.1021/cg3013443 10.1016/0022-1902(69)80055-2 10.1016/0022-3697(66)90227-7 10.1038/nmat2090 10.1007/s11664-011-1578-0 10.1126/science.1136494 10.1524/zkri.217.10.510.20789 10.1016/0038-1098(69)90402-5 10.1039/C6TC05197A 10.1021/ja903362b 10.1103/PhysRevLett.104.018301 10.1016/0022-3697(71)90007-2 10.1021/ic3027094 10.1107/S1600576717016879 10.1016/j.ssi.2004.01.047 10.1039/a702814h 10.1016/S0304-3991(98)00035-7 10.1021/acsami.5b01617 10.1002/adem.201100209 10.1107/S1600577515002283 10.1016/0038-1098(66)90120-7 10.1524/zkri.220.2.231.59119 10.1107/S0021889813005190 10.1007/978-3-662-04569-5 10.1107/S0567739476000508 10.1021/cm702223s 10.1002/zaac.19372340408 10.1103/PhysRevB.71.125120 10.1039/C7TC02983G 10.1016/0022-4596(73)90010-8 10.1088/1468-6996/13/5/053003 10.1107/S0365110X57002200 10.1016/S1359-6454(02)00467-6 10.1002/ange.200900598 10.1002/adfm.201302899 10.1016/S0921-4526(99)01423-4 10.1038/35098012 10.1007/s11664-013-2941-0 10.1002/pssc.200669659 10.1016/j.mattod.2015.10.004 10.1021/ja071875h 10.1016/j.ultramic.2005.02.003 10.1021/cm5031574 10.1016/0022-4596(79)90096-3 10.1039/a904492b 10.1201/9781420049718 10.1038/srep23143 10.1021/ic50073a032 10.1146/annurev-matsci-062910-100445 10.1515/znb-1970-0319 10.1039/C4DT03425B 10.1007/s10853-006-6555-2 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/c9tc04548a |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 15196 |
ExternalDocumentID | 10_1039_C9TC04548A c9tc04548a |
GroupedDBID | -JG 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c318t-be286e31b50c8fd7fddd9f206b89b307cf35882548699fad89f765e4eb172d323 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 05:22:45 EDT 2025 Tue Jul 01 02:08:59 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Tue Dec 17 20:59:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-be286e31b50c8fd7fddd9f206b89b307cf35882548699fad89f765e4eb172d323 |
Notes | 10.1039/c9tc04548a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4530-7420 0000-0002-3111-580X 0000-0003-1804-6878 |
PQID | 2324860766 |
PQPubID | 2047521 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2324860766 crossref_primary_10_1039_C9TC04548A crossref_citationtrail_10_1039_C9TC04548A rsc_primary_c9tc04548a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Pisharody (C9TC04548A-(cit17)/*[position()=1]) 1979; 30 Vaqueiro (C9TC04548A-(cit19)/*[position()=1]) 2000; 276–278 Ge (C9TC04548A-(cit1)/*[position()=1]) 2016; 19 Jellinek (C9TC04548A-(cit26)/*[position()=1]) 1957; 10 Nolas (C9TC04548A-(cit52)/*[position()=1]) 2001 Venkatasubramanian (C9TC04548A-(cit3)/*[position()=1]) 2001; 413 Mitchell (C9TC04548A-(cit45)/*[position()=1]) 2005; 103 Vensky (C9TC04548A-(cit48)/*[position()=1]) 2005; 220 König (C9TC04548A-(cit5)/*[position()=1]) 2011; 40 Engin (C9TC04548A-(cit8)/*[position()=1]) 2008; 20 Shakouri (C9TC04548A-(cit39)/*[position()=1]) 2011; 41 Schürmann (C9TC04548A-(cit6)/*[position()=1]) 2012; 14 Morris (C9TC04548A-(cit14)/*[position()=1]) 1969; 7 Sootsman (C9TC04548A-(cit22)/*[position()=1]) 2009; 121 Heinz (C9TC04548A-(cit38)/*[position()=1]) 2014; 24 Holt (C9TC04548A-(cit23)/*[position()=1]) 1966; 4 Vaqueiro (C9TC04548A-(cit47)/*[position()=1]) 1999; 9 Munir (C9TC04548A-(cit37)/*[position()=1]) 2006; 41 Holt (C9TC04548A-(cit27)/*[position()=1]) 1966; 27 Colgan (C9TC04548A-(cit29)/*[position()=1]) 1997; 7 Basham (C9TC04548A-(cit42)/*[position()=1]) 2015; 22 Beekman (C9TC04548A-(cit33)/*[position()=1]) 2009; 131 Juhás (C9TC04548A-(cit44)/*[position()=1]) 2013; 46 Maignan (C9TC04548A-(cit21)/*[position()=1]) 2012; 13 Rowe (C9TC04548A-(cit2)/*[position()=1]) 1995 Hansen (C9TC04548A-(cit18)/*[position()=1]) 2017; 5 Powell (C9TC04548A-(cit9)/*[position()=1]) 2004; 172 Chiu (C9TC04548A-(cit30)/*[position()=1]) 2016; 6 Kaltzoglou (C9TC04548A-(cit51)/*[position()=1]) 2014; 43 Lovasz (C9TC04548A-(cit10)/*[position()=1]) 1970; 25b Tsujii (C9TC04548A-(cit25)/*[position()=1]) 2006; 3 Chiritescu (C9TC04548A-(cit4)/*[position()=1]) 2007; 315 Beekman (C9TC04548A-(cit32)/*[position()=1]) 2010; 104 Du (C9TC04548A-(cit31)/*[position()=1]) 2017; 5 König (C9TC04548A-(cit36)/*[position()=1]) 2015; 44 Wei (C9TC04548A-(cit41)/*[position()=1]) 2015; 7 de Ridder (C9TC04548A-(cit50)/*[position()=1]) 1976; A32 Popma (C9TC04548A-(cit12)/*[position()=1]) 1969; 31 Coelho (C9TC04548A-(cit43)/*[position()=1]) 2018; 51 Stefanoski (C9TC04548A-(cit34)/*[position()=1]) 2013; 131 Popma (C9TC04548A-(cit13)/*[position()=1]) 1971; 32 Hytch (C9TC04548A-(cit46)/*[position()=1]) 1998; 74 Androulakis (C9TC04548A-(cit40)/*[position()=1]) 2007; 129 Sleight (C9TC04548A-(cit16)/*[position()=1]) 1969; 8 Snyder (C9TC04548A-(cit20)/*[position()=1]) 2008; 7 Hansen (C9TC04548A-(cit7)/*[position()=1]) 2014; 26 Babot (C9TC04548A-(cit28)/*[position()=1]) 1973; 8 Bensch (C9TC04548A-(cit15)/*[position()=1]) 2002; 217 Veremchuk (C9TC04548A-(cit35)/*[position()=1]) 2013; 52 Haraldsen (C9TC04548A-(cit11)/*[position()=1]) 1937; 234 Powell (C9TC04548A-(cit24)/*[position()=1]) 2005; 71 Castellanos Román (C9TC04548A-(cit49)/*[position()=1]) 2003; 51 |
References_xml | – issn: 1995 publication-title: CRC Handbook of Thermoelectrics doi: Rowe – issn: 2001 publication-title: Thermoelectrics - Basic Principles and New Material Developments doi: Nolas Sharp Goldsmid – volume: 131 start-page: 195 issue: 1 year: 2013 ident: C9TC04548A-(cit34)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg3013443 – volume: 31 start-page: 73 year: 1969 ident: C9TC04548A-(cit12)/*[position()=1] publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(69)80055-2 – volume: 27 start-page: 755 year: 1966 ident: C9TC04548A-(cit27)/*[position()=1] publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(66)90227-7 – volume: 7 start-page: 105 year: 2008 ident: C9TC04548A-(cit20)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 40 start-page: 1266 year: 2011 ident: C9TC04548A-(cit5)/*[position()=1] publication-title: J. Electron. Mater. doi: 10.1007/s11664-011-1578-0 – volume: 315 start-page: 351 year: 2007 ident: C9TC04548A-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1136494 – volume: 217 start-page: 510 year: 2002 ident: C9TC04548A-(cit15)/*[position()=1] publication-title: Z. Kristallogr. doi: 10.1524/zkri.217.10.510.20789 – volume: 7 start-page: 291 year: 1969 ident: C9TC04548A-(cit14)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/0038-1098(69)90402-5 – volume: 5 start-page: 1514 year: 2017 ident: C9TC04548A-(cit31)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05197A – volume: 131 start-page: 9642 issue: 28 year: 2009 ident: C9TC04548A-(cit33)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903362b – volume: 104 start-page: 018301 year: 2010 ident: C9TC04548A-(cit32)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.018301 – volume: 32 start-page: 581 year: 1971 ident: C9TC04548A-(cit13)/*[position()=1] publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(71)90007-2 – volume: 52 start-page: 4458 issue: 8 year: 2013 ident: C9TC04548A-(cit35)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic3027094 – volume: 51 start-page: 1 year: 2018 ident: C9TC04548A-(cit43)/*[position()=1] publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576717016879 – volume: 172 start-page: 469 year: 2004 ident: C9TC04548A-(cit9)/*[position()=1] publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.01.047 – volume: 7 start-page: 2433 year: 1997 ident: C9TC04548A-(cit29)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/a702814h – volume: 74 start-page: 131 year: 1998 ident: C9TC04548A-(cit46)/*[position()=1] publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(98)00035-7 – volume: 7 start-page: 9752 issue: 18 year: 2015 ident: C9TC04548A-(cit41)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01617 – volume: 14 start-page: 139 year: 2012 ident: C9TC04548A-(cit6)/*[position()=1] publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201100209 – volume: 22 start-page: 853 year: 2015 ident: C9TC04548A-(cit42)/*[position()=1] publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577515002283 – volume: 4 start-page: iv year: 1966 ident: C9TC04548A-(cit23)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/0038-1098(66)90120-7 – volume: 220 start-page: 231 year: 2005 ident: C9TC04548A-(cit48)/*[position()=1] publication-title: Z. Kristallogr. doi: 10.1524/zkri.220.2.231.59119 – volume: 46 start-page: 560 year: 2013 ident: C9TC04548A-(cit44)/*[position()=1] publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889813005190 – volume-title: Thermoelectrics – Basic Principles and New Material Developments year: 2001 ident: C9TC04548A-(cit52)/*[position()=1] doi: 10.1007/978-3-662-04569-5 – volume: A32 start-page: 216 year: 1976 ident: C9TC04548A-(cit50)/*[position()=1] publication-title: Acta Crystallogr. doi: 10.1107/S0567739476000508 – volume: 20 start-page: 2039 year: 2008 ident: C9TC04548A-(cit8)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm702223s – volume: 234 start-page: 372 year: 1937 ident: C9TC04548A-(cit11)/*[position()=1] publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19372340408 – volume: 71 start-page: 125120 year: 2005 ident: C9TC04548A-(cit24)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.71.125120 – volume: 5 start-page: 9331 year: 2017 ident: C9TC04548A-(cit18)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02983G – volume: 8 start-page: 166 year: 1973 ident: C9TC04548A-(cit28)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(73)90010-8 – volume: 13 start-page: 53003 year: 2012 ident: C9TC04548A-(cit21)/*[position()=1] publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/13/5/053003 – volume: 10 start-page: 620 year: 1957 ident: C9TC04548A-(cit26)/*[position()=1] publication-title: Acta Crystallogr. doi: 10.1107/S0365110X57002200 – volume: 51 start-page: 2125 year: 2003 ident: C9TC04548A-(cit49)/*[position()=1] publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00467-6 – volume: 121 start-page: 8768 year: 2009 ident: C9TC04548A-(cit22)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.200900598 – volume: 24 start-page: 2135 year: 2014 ident: C9TC04548A-(cit38)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302899 – volume: 276–278 start-page: 238 year: 2000 ident: C9TC04548A-(cit19)/*[position()=1] publication-title: Physica B doi: 10.1016/S0921-4526(99)01423-4 – volume: 413 start-page: 597 year: 2001 ident: C9TC04548A-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/35098012 – volume: 43 start-page: 2029 year: 2014 ident: C9TC04548A-(cit51)/*[position()=1] publication-title: J. Electron. Mater. doi: 10.1007/s11664-013-2941-0 – volume: 3 start-page: 2775 year: 2006 ident: C9TC04548A-(cit25)/*[position()=1] publication-title: Phys. Status Solidi doi: 10.1002/pssc.200669659 – volume: 19 start-page: 4 year: 2016 ident: C9TC04548A-(cit1)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2015.10.004 – volume: 129 start-page: 9780 year: 2007 ident: C9TC04548A-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071875h – volume: 103 start-page: 319 year: 2005 ident: C9TC04548A-(cit45)/*[position()=1] publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2005.02.003 – volume: 26 start-page: 6518 issue: 22 year: 2014 ident: C9TC04548A-(cit7)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm5031574 – volume: 30 start-page: 149 year: 1979 ident: C9TC04548A-(cit17)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(79)90096-3 – volume: 9 start-page: 2859 year: 1999 ident: C9TC04548A-(cit47)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/a904492b – volume-title: CRC Handbook of Thermoelectrics year: 1995 ident: C9TC04548A-(cit2)/*[position()=1] doi: 10.1201/9781420049718 – volume: 6 start-page: 23143 year: 2016 ident: C9TC04548A-(cit30)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep23143 – volume: 8 start-page: 566 year: 1969 ident: C9TC04548A-(cit16)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic50073a032 – volume: 41 start-page: 399 year: 2011 ident: C9TC04548A-(cit39)/*[position()=1] publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-062910-100445 – volume: 25b start-page: 313 year: 1970 ident: C9TC04548A-(cit10)/*[position()=1] publication-title: Z. Naturforsch. doi: 10.1515/znb-1970-0319 – volume: 44 start-page: 2835 year: 2015 ident: C9TC04548A-(cit36)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C4DT03425B – volume: 41 start-page: 763 year: 2006 ident: C9TC04548A-(cit37)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-6555-2 |
SSID | ssj0000816869 |
Score | 2.21562 |
Snippet | The occurrence of a unique 3D nanoscale network in Ni-Cr-S, treated
via
spark-plasma sintering, was discovered with a variety of
ex situ
and
in situ
TEM and... The occurrence of a unique 3D nanoscale network in Ni–Cr–S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and... The occurrence of a unique 3D nanoscale network in Ni–Cr–S, treated via spark-plasma sintering, was discovered with a variety of ex situ and in situ TEM and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15188 |
SubjectTerms | Domains Electron beams Electron irradiation N-type semiconductors Organic chemistry Plasma sintering Power factor Room temperature Seebeck effect Spark plasma sintering Thermoelectric materials |
Title | Purification by SPS and formation of a unique 3D nanoscale network: the showcase of Ni-Cr-S |
URI | https://www.proquest.com/docview/2324860766 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZpymB9GFu30nTdEGwvIzhzLMuXvWVuSza2UkgChT0ESZboYNglcRjbD9nv3dHFisNa2PZiHEkRib7PR0fH54LQayHHVACVAp5QEcQ5oQGPlfYRi7mIY1ZGYx07_PkymS7ij9f0utf71fFa2jR8JH7eGVfyP6hCG-Cqo2T_AVk_KTTAPeALV0AYrn-F8dVmpT19LIagR86uZuZlgI9ItNGPG5uklZwNK1bVa0BFDivr_t26daxv6u-CWbv-5degWAWze9RWmNj-taFoa8WNhoUN-2l7tOtifdv4RASdWjulNKJp6_ZT61f1-cVOnARQ0dSt3nHinrLKWYsmo8CbrGfiRk_wvtDBD6Z30TVkOEFpJF0U0jBIaeRyYnfbnKXTieq0w0iboNPJ3bHOK9fZxOGzLZT7xw4REp1gVeSN0MkHs84-6L0Tt517aD-C40fUR_uT8_mHT956Z8qVmHqJ_re3uW9J_nY7wa62sz3C7K3a-jJGj5k_Ro8cknhi2fQE9WR1iA46aSkP0QPjFizWT9GXLsMw_4GBYRgQxZ5huFaYYcswTM6wZxh2DHuHgV-45Zce7vj1DC0uzufFNHDlOAIBgr8JuIyyRJIxp6HIVJmqsixzFYUJz3IOW4VQhGba4AALkytWZrlKEypj0AbSqCQROUL9qq7kMcKCMq6IDFnEWAzzMJERJssURqVKKTpAb9plWwqXq16XTPm2ND4TJF8W-bwwSzwZoFd-7K3N0HLnqNN29ZfuCV4v9WkiS8I0SQboCBDx398CeHJfx3P0UJPYWuNOUb9ZbeQL0E8b_tKR5Tf2SY_n |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Purification+by+SPS+and+formation+of+a+unique+3D+nanoscale+network%3A+the+showcase+of+Ni-Cr-S&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Gro%C3%9F%2C+H&rft.au=Dankwort%2C+T&rft.au=Hansen%2C+A.-L&rft.au=Sch%C3%BCrmann%2C+U&rft.date=2019&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=48&rft.spage=15188&rft.epage=15196&rft_id=info:doi/10.1039%2Fc9tc04548a&rft.externalDocID=c9tc04548a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |