Modeling fluid-structure interactions during impact loading of water-backed panels
Understanding the response of water-backed panels to impact loading is of paramount importance in the design of marine and aerospace structures. In this theoretical study, we propose a modeling framework to investigate the two-dimensional, nonlinear hydroelastic response of thin structures. Within E...
Saved in:
Published in | Composite structures Vol. 171; pp. 576 - 590 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Understanding the response of water-backed panels to impact loading is of paramount importance in the design of marine and aerospace structures. In this theoretical study, we propose a modeling framework to investigate the two-dimensional, nonlinear hydroelastic response of thin structures. Within Euler–Bernoulli beam theory, we account for nonlinear stiffening due to membrane stretching. We demonstrate a closed-form solution for the fluid potential flow, which affords the exact computation of the hydrodynamic loading. The Galerkin discretization is used to cast the governing nonlinear integro-differential equation into a set of nonlinear ordinary differential equations. Two different semi-analytical solutions are established, by using the in-vacuum linear mode shapes of the beam and Hermitian finite element basis functions. Results are verified against full two-dimensional finite element simulations. We conduct a parametric study to elucidate the role of the beam thickness and the functional form of the impact loading. Our results indicate that the water-backing has a critical role on the structural dynamics, which is stronger for thin beams subject to rapid pulses. The model fills a significant gap in the technical literature, holding promise to inform the design of experimental setups and assist in the analysis of observations on water-backed panels. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2017.02.098 |