Conformational switching of modified guest chains in polymer brushes
Using a numerical quasi off-lattice self-consistent field method which describes heterogeneous chains of spherical monomers we study the case of a densely grafted polymer brush with a fraction of free chain ends being replaced by a modified end-group differing in size and solvent selectivity. We can...
Saved in:
Published in | The Journal of chemical physics Vol. 139; no. 4; p. 044910 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
28.07.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Using a numerical quasi off-lattice self-consistent field method which describes heterogeneous chains of spherical monomers we study the case of a densely grafted polymer brush with a fraction of free chain ends being replaced by a modified end-group differing in size and solvent selectivity. We can confirm the observation from molecular dynamics simulations that upon changing the solvent conditions, a switching in location of end-groups which are bigger than monomers from a state "exposed" to the solvent (on the top of the brush) to a "hidden" state (inside the brush) takes place. Our numerical method allows a detailed study of the switching effect as a function of the relevant parameters, such as grafting density, chain length, size of end-groups and their volume fraction. We find that the switching effect is enhanced for long chains, low fractions of modified chains, and big end-groups. We consider the case of low fraction of modified chains in more detail using a test chain method. Here, we explore the optimal grafting density as a function of the size of the end-groups, where the switching is most sensitive. These values can be in the experimental range for end-groups which are at least 3-4 times bigger than the monomers. The end-groups can be realized by attaching nano-particles to the last monomer of a brush-chain. |
---|---|
ISSN: | 1089-7690 |
DOI: | 10.1063/1.4816125 |