A 44.3-mW 62.4-fps Hyperspectral Image Processor for Spectral Unmixing in MAV Remote Sensing
This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing, including rank reduction, endmember extraction, and abundance estimation. The design employs architecture explorations, including folding and data...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 60; no. 5; pp. 1818 - 1829 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing, including rank reduction, endmember extraction, and abundance estimation. The design employs architecture explorations, including folding and data interleaving, to reduce hardware complexity. To enhance the throughput, the processor incorporates deeply pipelined reconfigurable processing elements (PEs) for compute-intensive tasks involved in spectral unmixing. The proposed sparsity-adaptive clocking technique leverages data sparsity and minimizes dynamic power consumption. Fabricated in a 40-nm CMOS technology, the proposed processor occupies a core area of 2.56 mm2. The chip consumes 44.3 mW of power at a clock frequency of 175 MHz from a 0.68-V supply. The processor can concurrently generate eight endmembers and their associated abundances for a <inline-formula> <tex-math notation="LaTeX">{256}{\times }{ 256}{\times }64 </tex-math></inline-formula> HSI, resulting in a throughput of 62.4 fps. Comparative analysis with a high-end CPU demonstrates a significant processing speed improvement of <inline-formula> <tex-math notation="LaTeX">544{\times } </tex-math></inline-formula>, accompanied by energy efficiency that is 1735<inline-formula> <tex-math notation="LaTeX">537{\times } </tex-math></inline-formula> higher and area efficiency that is 31<inline-formula> <tex-math notation="LaTeX">647{\times } </tex-math></inline-formula> higher. The proposed processor is <inline-formula> <tex-math notation="LaTeX">17.5{\times } </tex-math></inline-formula> faster, with 236<inline-formula> <tex-math notation="LaTeX">735{\times } </tex-math></inline-formula> higher energy efficiency and <inline-formula> <tex-math notation="LaTeX">4158{\times } </tex-math></inline-formula> higher area efficiency in comparison to a high-end graphics processing unit (GPU). The proposed processor provides a promising solution to support real-time hyperspectral remote sensing, particularly for battery-powered micro air vehicles (MAVs). |
---|---|
AbstractList | This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing, including rank reduction, endmember extraction, and abundance estimation. The design employs architecture explorations, including folding and data interleaving, to reduce hardware complexity. To enhance the throughput, the processor incorporates deeply pipelined reconfigurable processing elements (PEs) for compute-intensive tasks involved in spectral unmixing. The proposed sparsity-adaptive clocking technique leverages data sparsity and minimizes dynamic power consumption. Fabricated in a 40-nm CMOS technology, the proposed processor occupies a core area of 2.56 mm2. The chip consumes 44.3 mW of power at a clock frequency of 175 MHz from a 0.68-V supply. The processor can concurrently generate eight endmembers and their associated abundances for a <inline-formula> <tex-math notation="LaTeX">{256}{\times }{ 256}{\times }64 </tex-math></inline-formula> HSI, resulting in a throughput of 62.4 fps. Comparative analysis with a high-end CPU demonstrates a significant processing speed improvement of <inline-formula> <tex-math notation="LaTeX">544{\times } </tex-math></inline-formula>, accompanied by energy efficiency that is 1735<inline-formula> <tex-math notation="LaTeX">537{\times } </tex-math></inline-formula> higher and area efficiency that is 31<inline-formula> <tex-math notation="LaTeX">647{\times } </tex-math></inline-formula> higher. The proposed processor is <inline-formula> <tex-math notation="LaTeX">17.5{\times } </tex-math></inline-formula> faster, with 236<inline-formula> <tex-math notation="LaTeX">735{\times } </tex-math></inline-formula> higher energy efficiency and <inline-formula> <tex-math notation="LaTeX">4158{\times } </tex-math></inline-formula> higher area efficiency in comparison to a high-end graphics processing unit (GPU). The proposed processor provides a promising solution to support real-time hyperspectral remote sensing, particularly for battery-powered micro air vehicles (MAVs). This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing, including rank reduction, endmember extraction, and abundance estimation. The design employs architecture explorations, including folding and data interleaving, to reduce hardware complexity. To enhance the throughput, the processor incorporates deeply pipelined reconfigurable processing elements (PEs) for compute-intensive tasks involved in spectral unmixing. The proposed sparsity-adaptive clocking technique leverages data sparsity and minimizes dynamic power consumption. Fabricated in a 40-nm CMOS technology, the proposed processor occupies a core area of 2.56 mm2. The chip consumes 44.3 mW of power at a clock frequency of 175 MHz from a 0.68-V supply. The processor can concurrently generate eight endmembers and their associated abundances for a [Formula Omitted] HSI, resulting in a throughput of 62.4 fps. Comparative analysis with a high-end CPU demonstrates a significant processing speed improvement of [Formula Omitted], accompanied by energy efficiency that is 1735[Formula Omitted] higher and area efficiency that is 31[Formula Omitted] higher. The proposed processor is [Formula Omitted] faster, with 236[Formula Omitted] higher energy efficiency and [Formula Omitted] higher area efficiency in comparison to a high-end graphics processing unit (GPU). The proposed processor provides a promising solution to support real-time hyperspectral remote sensing, particularly for battery-powered micro air vehicles (MAVs). |
Author | Lo, Yu-Chen Wu, Yi-Chung Yang, Chia-Hsiang |
Author_xml | – sequence: 1 givenname: Yu-Chen orcidid: 0009-0009-3958-6460 surname: Lo fullname: Lo, Yu-Chen organization: Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan – sequence: 2 givenname: Yi-Chung orcidid: 0000-0002-8774-623X surname: Wu fullname: Wu, Yi-Chung organization: Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan – sequence: 3 givenname: Chia-Hsiang orcidid: 0000-0003-1163-321X surname: Yang fullname: Yang, Chia-Hsiang email: chyee@ntu.edu.tw organization: Department of Electrical Engineering, Graduate Institute of Electronics Engineering National Taiwan University, Taipei, Taiwan |
BookMark | eNpNkFtLw0AQhRepYFv9AYIPCz4n7mYv2TyWom2lohirPghLupktKc3F3RTsvzehFXwYhpk55wx8IzSo6goQuqYkpJQkd49pOg0jEvGQcSGVSs7QkAqhAhqzzwEaEkJVkESEXKCR99tu5FzRIfqaYN55gvIDyyjkgW08nh8acL4B07pshxdltgH84moD3tcO267Sv-OqKoufotrgosJPk3f8CmXdAk6h8t32Ep3bbOfh6tTHaPVw_zadB8vn2WI6WQaGUdUGkcotA5MDISSXNs-EyWREYpZnJgGWC7WOlaVKAoi1EqCMBcmYklJaQdaMjdHtMbdx9fcefKu39d5V3UvNaMJjSRLRq-hRZVztvQOrG1eUmTtoSnQPUfcQdQ9RnyB2npujpwCAf3qpIkU4-wXan24r |
CODEN | IJSCBC |
Cites_doi | 10.1109/IGARSS39084.2020.9324546 10.1109/JSTARS.2022.3200733 10.1109/TGRS.2005.844293 10.1109/TIP.2018.2836324 10.1109/TIP.2016.2579259 10.1002/9781119687788.ch2 10.1109/IITCEE57236.2023.10090877 10.1109/TGRS.2011.2144605 10.1109/IGARSS.2019.8899081 10.1109/JSTARS.2015.2406339 10.1201/b11656-24 10.1109/IGARSS39084.2020.9324087 10.1007/s11554-016-0650-7 10.1109/ICSTCEE56972.2022.10100029 10.1109/TGRS.2021.3077833 10.1109/TGRS.2006.881803 10.1109/JSTARS.2012.2194696 10.1109/TGRS.2019.2892903 10.1007/s11554-008-0106-9 10.1126/science.228.4704.1147 10.1109/JSTARS.2011.2171673 10.1109/VLSITechnologyandCir46769.2022.9830370 10.1109/LGRS.2022.3189109 10.1109/JSTARS.2022.3157740 10.1109/FPT.2018.00051 10.1109/MGRS.2018.2867592 10.1109/ACCESS.2018.2812999 10.1155/2014/596103 10.1109/ACCESS.2020.2966044 10.1117/12.366289 10.1109/LGRS.2018.2810600 10.1109/JSTARS.2014.2320576 10.1109/JSTARS.2019.2934011 10.1109/JSTARS.2014.2347075 10.1109/TGRS.2011.2158829 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JSSC.2024.3456889 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-173X |
EndPage | 1829 |
ExternalDocumentID | 10_1109_JSSC_2024_3456889 10682804 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan, grantid: NSTC 112-2218-E-002-029 funderid: 10.13039/501100020950 – fundername: Intelligent and Sustainable Medical Electronics Research Fund in National Taiwan University |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TAE TN5 UKR VH1 AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c318t-28df3ecde000d6fda5ca62073dac9e3d58b78f186ee5b85e8cfe6338666f50b33 |
IEDL.DBID | RIE |
ISSN | 0018-9200 |
IngestDate | Thu Aug 14 02:12:25 EDT 2025 Tue Jul 01 05:06:58 EDT 2025 Wed Aug 27 02:03:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-28df3ecde000d6fda5ca62073dac9e3d58b78f186ee5b85e8cfe6338666f50b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8774-623X 0000-0003-1163-321X 0009-0009-3958-6460 |
PQID | 3194760953 |
PQPubID | 85482 |
PageCount | 12 |
ParticipantIDs | ieee_primary_10682804 proquest_journals_3194760953 crossref_primary_10_1109_JSSC_2024_3456889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of solid-state circuits |
PublicationTitleAbbrev | JSSC |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref11 ref33 (ref38) 2024 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Boardman (ref31); 1 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 (ref30) 2022 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref11 doi: 10.1109/IGARSS39084.2020.9324546 – ident: ref25 doi: 10.1109/JSTARS.2022.3200733 – ident: ref33 doi: 10.1109/TGRS.2005.844293 – volume-title: SNR in Hyperspectral Cameras year: 2024 ident: ref38 – ident: ref24 doi: 10.1109/TIP.2018.2836324 – ident: ref12 doi: 10.1109/TIP.2016.2579259 – ident: ref3 doi: 10.1002/9781119687788.ch2 – ident: ref14 doi: 10.1109/IITCEE57236.2023.10090877 – ident: ref28 doi: 10.1109/TGRS.2011.2144605 – ident: ref5 doi: 10.1109/IGARSS.2019.8899081 – ident: ref6 doi: 10.1109/JSTARS.2015.2406339 – ident: ref29 doi: 10.1201/b11656-24 – ident: ref27 doi: 10.1109/IGARSS39084.2020.9324087 – ident: ref19 doi: 10.1007/s11554-016-0650-7 – ident: ref4 doi: 10.1109/ICSTCEE56972.2022.10100029 – ident: ref26 doi: 10.1109/TGRS.2021.3077833 – ident: ref34 doi: 10.1109/TGRS.2006.881803 – volume-title: HYDICE Urban Dataset year: 2022 ident: ref30 – ident: ref10 doi: 10.1109/JSTARS.2012.2194696 – ident: ref13 doi: 10.1109/TGRS.2019.2892903 – volume: 1 start-page: 23 volume-title: Proc. Summaries JPL Ariborne Earth Sci. Workshop ident: ref31 article-title: Mapping target signatures via partial unmixing of AVIRIS data – ident: ref8 doi: 10.1007/s11554-008-0106-9 – ident: ref1 doi: 10.1126/science.228.4704.1147 – ident: ref35 doi: 10.1109/JSTARS.2011.2171673 – ident: ref37 doi: 10.1109/VLSITechnologyandCir46769.2022.9830370 – ident: ref16 doi: 10.1109/LGRS.2022.3189109 – ident: ref9 doi: 10.1109/JSTARS.2022.3157740 – ident: ref15 doi: 10.1109/FPT.2018.00051 – ident: ref7 doi: 10.1109/MGRS.2018.2867592 – ident: ref2 doi: 10.1109/ACCESS.2018.2812999 – ident: ref36 doi: 10.1155/2014/596103 – ident: ref21 doi: 10.1109/ACCESS.2020.2966044 – ident: ref32 doi: 10.1117/12.366289 – ident: ref18 doi: 10.1109/LGRS.2018.2810600 – ident: ref23 doi: 10.1109/JSTARS.2014.2320576 – ident: ref17 doi: 10.1109/JSTARS.2019.2934011 – ident: ref20 doi: 10.1109/JSTARS.2014.2347075 – ident: ref22 doi: 10.1109/TGRS.2011.2158829 |
SSID | ssj0014481 |
Score | 2.476174 |
Snippet | This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1818 |
SubjectTerms | Abundance CMOS integrated circuits domain-specific processor Eigenvalues and eigenfunctions Energy efficiency energy-efficient architecture Estimation Graphics processing units Hyperspectral imaging Image processing systems Image processors Indexes Micro air vehicles (MAV) Microprocessors Power management Real time Real-time systems Remote sensing Sparsity spectral unmixing Throughput Workflow |
Title | A 44.3-mW 62.4-fps Hyperspectral Image Processor for Spectral Unmixing in MAV Remote Sensing |
URI | https://ieeexplore.ieee.org/document/10682804 https://www.proquest.com/docview/3194760953 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMnIbUfaZoex3DMwXZwTncQSpu8ypB1Yx8g_vW-pJ0MRfBWaBNCfnkv79f3RcgNV26KYqOZx3XEeOpHLEM9yLhMYy5dnblgiGJ_ILoj3huH4ypZ3ebCAIANPgPHPFpfvp6ptflVhhIukCCY6p-7yNzKZK1vlwHyjLI9nocSjNhXLkzPje96w2EbqaDPnQDtBWlaum9dQraryi9VbO-XziEZbFZWhpW8O-tV5qjPH0Ub_730I3JQWZq0VR6NY7IDxQnZ36o_eEpeW5Tjatn0hQrf4SyfL2kXiWmZf7nA0Q9T1De0yiaYLSiauHS4eTkqppMPnIhOCtpvPdNHQNyBDk1MfPFWJ6PO_VO7y6p2C0yhYK-YL3UegNKAWlKLXKehSoWPKkCnKoZAhzKLZO5JARBmMgSpchDIcJEA5aGbBcEZqRWzAs4J1VEaSzQdQCHiyosyZOGpdkUMkZ8LGTTI7Wb_k3lZVSOxbMSNEwNWYsBKKrAapG72c-vDcisbpLmBLKkEb5mgRuGRLaJ38cewS7Lnmx6-NmixSWqrxRqu0LBYZdf2QH0B4tfIFA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6iD-qD14nzmgefhNRe0jR9HEPZ1O3BbboHobTJqYisk11A_PWepJ0MRfCt0CaEfDkn5-u5EXLBlZui2GjmcR0xnvoRy1APMi7TmEtXZy4YotjpitaA3w7DYZWsbnNhAMAGn4FjHq0vX4_V3PwqQwkXSBBM9c81vPhDr0zX-nYaINMoG-R5KMOIfuXE9Nz46rbXayIZ9LkToMUgTVP3pWvI9lX5pYztDXOzTbqLtZWBJW_OfJY56vNH2cZ_L36HbFW2Jm2Uh2OXrECxRzaXKhDuk-cG5bhaNnqiwnc4y9-ntIXUtMzAnODo9gg1Dq3yCcYTikYu7S1eDorR6wdORF8L2mk80gdA5IH2TFR88VIjg5vrfrPFqoYLTKFoz5gvdR6A0oB6Uotcp6FKhY9KQKcqhkCHMotk7kkBEGYyBKlyEMhxkQLloZsFwQFZLcYFHBKqozSWaDyAQsyVF2XIw1PtihgiPxcyqJPLxf4n72VdjcTyETdODFiJASupwKqTmtnPpQ_LrayTkwVkSSV60wR1Co9sGb2jP4adk_VWv3Of3Le7d8dkwzcdfW0I4wlZnU3mcIpmxiw7s4frC4JPy10 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+44.3-mW+62.4-fps+Hyperspectral+Image+Processor+for+Spectral+Unmixing+in+MAV+Remote+Sensing&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Lo%2C+Yu-Chen&rft.au=Wu%2C+Yi-Chung&rft.au=Yang%2C+Chia-Hsiang&rft.date=2025-05-01&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=60&rft.issue=5&rft.spage=1818&rft.epage=1829&rft_id=info:doi/10.1109%2FJSSC.2024.3456889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSSC_2024_3456889 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon |