A 44.3-mW 62.4-fps Hyperspectral Image Processor for Spectral Unmixing in MAV Remote Sensing

This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing, including rank reduction, endmember extraction, and abundance estimation. The design employs architecture explorations, including folding and data...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 60; no. 5; pp. 1818 - 1829
Main Authors Lo, Yu-Chen, Wu, Yi-Chung, Yang, Chia-Hsiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing, including rank reduction, endmember extraction, and abundance estimation. The design employs architecture explorations, including folding and data interleaving, to reduce hardware complexity. To enhance the throughput, the processor incorporates deeply pipelined reconfigurable processing elements (PEs) for compute-intensive tasks involved in spectral unmixing. The proposed sparsity-adaptive clocking technique leverages data sparsity and minimizes dynamic power consumption. Fabricated in a 40-nm CMOS technology, the proposed processor occupies a core area of 2.56 mm2. The chip consumes 44.3 mW of power at a clock frequency of 175 MHz from a 0.68-V supply. The processor can concurrently generate eight endmembers and their associated abundances for a <inline-formula> <tex-math notation="LaTeX">{256}{\times }{ 256}{\times }64 </tex-math></inline-formula> HSI, resulting in a throughput of 62.4 fps. Comparative analysis with a high-end CPU demonstrates a significant processing speed improvement of <inline-formula> <tex-math notation="LaTeX">544{\times } </tex-math></inline-formula>, accompanied by energy efficiency that is 1735<inline-formula> <tex-math notation="LaTeX">537{\times } </tex-math></inline-formula> higher and area efficiency that is 31<inline-formula> <tex-math notation="LaTeX">647{\times } </tex-math></inline-formula> higher. The proposed processor is <inline-formula> <tex-math notation="LaTeX">17.5{\times } </tex-math></inline-formula> faster, with 236<inline-formula> <tex-math notation="LaTeX">735{\times } </tex-math></inline-formula> higher energy efficiency and <inline-formula> <tex-math notation="LaTeX">4158{\times } </tex-math></inline-formula> higher area efficiency in comparison to a high-end graphics processing unit (GPU). The proposed processor provides a promising solution to support real-time hyperspectral remote sensing, particularly for battery-powered micro air vehicles (MAVs).
AbstractList This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing, including rank reduction, endmember extraction, and abundance estimation. The design employs architecture explorations, including folding and data interleaving, to reduce hardware complexity. To enhance the throughput, the processor incorporates deeply pipelined reconfigurable processing elements (PEs) for compute-intensive tasks involved in spectral unmixing. The proposed sparsity-adaptive clocking technique leverages data sparsity and minimizes dynamic power consumption. Fabricated in a 40-nm CMOS technology, the proposed processor occupies a core area of 2.56 mm2. The chip consumes 44.3 mW of power at a clock frequency of 175 MHz from a 0.68-V supply. The processor can concurrently generate eight endmembers and their associated abundances for a <inline-formula> <tex-math notation="LaTeX">{256}{\times }{ 256}{\times }64 </tex-math></inline-formula> HSI, resulting in a throughput of 62.4 fps. Comparative analysis with a high-end CPU demonstrates a significant processing speed improvement of <inline-formula> <tex-math notation="LaTeX">544{\times } </tex-math></inline-formula>, accompanied by energy efficiency that is 1735<inline-formula> <tex-math notation="LaTeX">537{\times } </tex-math></inline-formula> higher and area efficiency that is 31<inline-formula> <tex-math notation="LaTeX">647{\times } </tex-math></inline-formula> higher. The proposed processor is <inline-formula> <tex-math notation="LaTeX">17.5{\times } </tex-math></inline-formula> faster, with 236<inline-formula> <tex-math notation="LaTeX">735{\times } </tex-math></inline-formula> higher energy efficiency and <inline-formula> <tex-math notation="LaTeX">4158{\times } </tex-math></inline-formula> higher area efficiency in comparison to a high-end graphics processing unit (GPU). The proposed processor provides a promising solution to support real-time hyperspectral remote sensing, particularly for battery-powered micro air vehicles (MAVs).
This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing, including rank reduction, endmember extraction, and abundance estimation. The design employs architecture explorations, including folding and data interleaving, to reduce hardware complexity. To enhance the throughput, the processor incorporates deeply pipelined reconfigurable processing elements (PEs) for compute-intensive tasks involved in spectral unmixing. The proposed sparsity-adaptive clocking technique leverages data sparsity and minimizes dynamic power consumption. Fabricated in a 40-nm CMOS technology, the proposed processor occupies a core area of 2.56 mm2. The chip consumes 44.3 mW of power at a clock frequency of 175 MHz from a 0.68-V supply. The processor can concurrently generate eight endmembers and their associated abundances for a [Formula Omitted] HSI, resulting in a throughput of 62.4 fps. Comparative analysis with a high-end CPU demonstrates a significant processing speed improvement of [Formula Omitted], accompanied by energy efficiency that is 1735[Formula Omitted] higher and area efficiency that is 31[Formula Omitted] higher. The proposed processor is [Formula Omitted] faster, with 236[Formula Omitted] higher energy efficiency and [Formula Omitted] higher area efficiency in comparison to a high-end graphics processing unit (GPU). The proposed processor provides a promising solution to support real-time hyperspectral remote sensing, particularly for battery-powered micro air vehicles (MAVs).
Author Lo, Yu-Chen
Wu, Yi-Chung
Yang, Chia-Hsiang
Author_xml – sequence: 1
  givenname: Yu-Chen
  orcidid: 0009-0009-3958-6460
  surname: Lo
  fullname: Lo, Yu-Chen
  organization: Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 2
  givenname: Yi-Chung
  orcidid: 0000-0002-8774-623X
  surname: Wu
  fullname: Wu, Yi-Chung
  organization: Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Chia-Hsiang
  orcidid: 0000-0003-1163-321X
  surname: Yang
  fullname: Yang, Chia-Hsiang
  email: chyee@ntu.edu.tw
  organization: Department of Electrical Engineering, Graduate Institute of Electronics Engineering National Taiwan University, Taipei, Taiwan
BookMark eNpNkFtLw0AQhRepYFv9AYIPCz4n7mYv2TyWom2lohirPghLupktKc3F3RTsvzehFXwYhpk55wx8IzSo6goQuqYkpJQkd49pOg0jEvGQcSGVSs7QkAqhAhqzzwEaEkJVkESEXKCR99tu5FzRIfqaYN55gvIDyyjkgW08nh8acL4B07pshxdltgH84moD3tcO267Sv-OqKoufotrgosJPk3f8CmXdAk6h8t32Ep3bbOfh6tTHaPVw_zadB8vn2WI6WQaGUdUGkcotA5MDISSXNs-EyWREYpZnJgGWC7WOlaVKAoi1EqCMBcmYklJaQdaMjdHtMbdx9fcefKu39d5V3UvNaMJjSRLRq-hRZVztvQOrG1eUmTtoSnQPUfcQdQ9RnyB2npujpwCAf3qpIkU4-wXan24r
CODEN IJSCBC
Cites_doi 10.1109/IGARSS39084.2020.9324546
10.1109/JSTARS.2022.3200733
10.1109/TGRS.2005.844293
10.1109/TIP.2018.2836324
10.1109/TIP.2016.2579259
10.1002/9781119687788.ch2
10.1109/IITCEE57236.2023.10090877
10.1109/TGRS.2011.2144605
10.1109/IGARSS.2019.8899081
10.1109/JSTARS.2015.2406339
10.1201/b11656-24
10.1109/IGARSS39084.2020.9324087
10.1007/s11554-016-0650-7
10.1109/ICSTCEE56972.2022.10100029
10.1109/TGRS.2021.3077833
10.1109/TGRS.2006.881803
10.1109/JSTARS.2012.2194696
10.1109/TGRS.2019.2892903
10.1007/s11554-008-0106-9
10.1126/science.228.4704.1147
10.1109/JSTARS.2011.2171673
10.1109/VLSITechnologyandCir46769.2022.9830370
10.1109/LGRS.2022.3189109
10.1109/JSTARS.2022.3157740
10.1109/FPT.2018.00051
10.1109/MGRS.2018.2867592
10.1109/ACCESS.2018.2812999
10.1155/2014/596103
10.1109/ACCESS.2020.2966044
10.1117/12.366289
10.1109/LGRS.2018.2810600
10.1109/JSTARS.2014.2320576
10.1109/JSTARS.2019.2934011
10.1109/JSTARS.2014.2347075
10.1109/TGRS.2011.2158829
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSSC.2024.3456889
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 1829
ExternalDocumentID 10_1109_JSSC_2024_3456889
10682804
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan,
  grantid: NSTC 112-2218-E-002-029
  funderid: 10.13039/501100020950
– fundername: Intelligent and Sustainable Medical Electronics Research Fund in National Taiwan University
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c318t-28df3ecde000d6fda5ca62073dac9e3d58b78f186ee5b85e8cfe6338666f50b33
IEDL.DBID RIE
ISSN 0018-9200
IngestDate Thu Aug 14 02:12:25 EDT 2025
Tue Jul 01 05:06:58 EDT 2025
Wed Aug 27 02:03:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-28df3ecde000d6fda5ca62073dac9e3d58b78f186ee5b85e8cfe6338666f50b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8774-623X
0000-0003-1163-321X
0009-0009-3958-6460
PQID 3194760953
PQPubID 85482
PageCount 12
ParticipantIDs ieee_primary_10682804
proquest_journals_3194760953
crossref_primary_10_1109_JSSC_2024_3456889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref11
ref33
(ref38) 2024
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Boardman (ref31); 1
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
(ref30) 2022
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/IGARSS39084.2020.9324546
– ident: ref25
  doi: 10.1109/JSTARS.2022.3200733
– ident: ref33
  doi: 10.1109/TGRS.2005.844293
– volume-title: SNR in Hyperspectral Cameras
  year: 2024
  ident: ref38
– ident: ref24
  doi: 10.1109/TIP.2018.2836324
– ident: ref12
  doi: 10.1109/TIP.2016.2579259
– ident: ref3
  doi: 10.1002/9781119687788.ch2
– ident: ref14
  doi: 10.1109/IITCEE57236.2023.10090877
– ident: ref28
  doi: 10.1109/TGRS.2011.2144605
– ident: ref5
  doi: 10.1109/IGARSS.2019.8899081
– ident: ref6
  doi: 10.1109/JSTARS.2015.2406339
– ident: ref29
  doi: 10.1201/b11656-24
– ident: ref27
  doi: 10.1109/IGARSS39084.2020.9324087
– ident: ref19
  doi: 10.1007/s11554-016-0650-7
– ident: ref4
  doi: 10.1109/ICSTCEE56972.2022.10100029
– ident: ref26
  doi: 10.1109/TGRS.2021.3077833
– ident: ref34
  doi: 10.1109/TGRS.2006.881803
– volume-title: HYDICE Urban Dataset
  year: 2022
  ident: ref30
– ident: ref10
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref13
  doi: 10.1109/TGRS.2019.2892903
– volume: 1
  start-page: 23
  volume-title: Proc. Summaries JPL Ariborne Earth Sci. Workshop
  ident: ref31
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
– ident: ref8
  doi: 10.1007/s11554-008-0106-9
– ident: ref1
  doi: 10.1126/science.228.4704.1147
– ident: ref35
  doi: 10.1109/JSTARS.2011.2171673
– ident: ref37
  doi: 10.1109/VLSITechnologyandCir46769.2022.9830370
– ident: ref16
  doi: 10.1109/LGRS.2022.3189109
– ident: ref9
  doi: 10.1109/JSTARS.2022.3157740
– ident: ref15
  doi: 10.1109/FPT.2018.00051
– ident: ref7
  doi: 10.1109/MGRS.2018.2867592
– ident: ref2
  doi: 10.1109/ACCESS.2018.2812999
– ident: ref36
  doi: 10.1155/2014/596103
– ident: ref21
  doi: 10.1109/ACCESS.2020.2966044
– ident: ref32
  doi: 10.1117/12.366289
– ident: ref18
  doi: 10.1109/LGRS.2018.2810600
– ident: ref23
  doi: 10.1109/JSTARS.2014.2320576
– ident: ref17
  doi: 10.1109/JSTARS.2019.2934011
– ident: ref20
  doi: 10.1109/JSTARS.2014.2347075
– ident: ref22
  doi: 10.1109/TGRS.2011.2158829
SSID ssj0014481
Score 2.476174
Snippet This article presents the first dedicated processor designed to support the complete spectral unmixing workflow for hyperspectral image (HSI) processing,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1818
SubjectTerms Abundance
CMOS integrated circuits
domain-specific processor
Eigenvalues and eigenfunctions
Energy efficiency
energy-efficient architecture
Estimation
Graphics processing units
Hyperspectral imaging
Image processing systems
Image processors
Indexes
Micro air vehicles (MAV)
Microprocessors
Power management
Real time
Real-time systems
Remote sensing
Sparsity
spectral unmixing
Throughput
Workflow
Title A 44.3-mW 62.4-fps Hyperspectral Image Processor for Spectral Unmixing in MAV Remote Sensing
URI https://ieeexplore.ieee.org/document/10682804
https://www.proquest.com/docview/3194760953
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMnIbUfaZoex3DMwXZwTncQSpu8ypB1Yx8g_vW-pJ0MRfBWaBNCfnkv79f3RcgNV26KYqOZx3XEeOpHLEM9yLhMYy5dnblgiGJ_ILoj3huH4ypZ3ebCAIANPgPHPFpfvp6ptflVhhIukCCY6p-7yNzKZK1vlwHyjLI9nocSjNhXLkzPje96w2EbqaDPnQDtBWlaum9dQraryi9VbO-XziEZbFZWhpW8O-tV5qjPH0Ub_730I3JQWZq0VR6NY7IDxQnZ36o_eEpeW5Tjatn0hQrf4SyfL2kXiWmZf7nA0Q9T1De0yiaYLSiauHS4eTkqppMPnIhOCtpvPdNHQNyBDk1MfPFWJ6PO_VO7y6p2C0yhYK-YL3UegNKAWlKLXKehSoWPKkCnKoZAhzKLZO5JARBmMgSpchDIcJEA5aGbBcEZqRWzAs4J1VEaSzQdQCHiyosyZOGpdkUMkZ8LGTTI7Wb_k3lZVSOxbMSNEwNWYsBKKrAapG72c-vDcisbpLmBLKkEb5mgRuGRLaJ38cewS7Lnmx6-NmixSWqrxRqu0LBYZdf2QH0B4tfIFA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6iD-qD14nzmgefhNRe0jR9HEPZ1O3BbboHobTJqYisk11A_PWepJ0MRfCt0CaEfDkn5-u5EXLBlZui2GjmcR0xnvoRy1APMi7TmEtXZy4YotjpitaA3w7DYZWsbnNhAMAGn4FjHq0vX4_V3PwqQwkXSBBM9c81vPhDr0zX-nYaINMoG-R5KMOIfuXE9Nz46rbXayIZ9LkToMUgTVP3pWvI9lX5pYztDXOzTbqLtZWBJW_OfJY56vNH2cZ_L36HbFW2Jm2Uh2OXrECxRzaXKhDuk-cG5bhaNnqiwnc4y9-ntIXUtMzAnODo9gg1Dq3yCcYTikYu7S1eDorR6wdORF8L2mk80gdA5IH2TFR88VIjg5vrfrPFqoYLTKFoz5gvdR6A0oB6Uotcp6FKhY9KQKcqhkCHMotk7kkBEGYyBKlyEMhxkQLloZsFwQFZLcYFHBKqozSWaDyAQsyVF2XIw1PtihgiPxcyqJPLxf4n72VdjcTyETdODFiJASupwKqTmtnPpQ_LrayTkwVkSSV60wR1Co9sGb2jP4adk_VWv3Of3Le7d8dkwzcdfW0I4wlZnU3mcIpmxiw7s4frC4JPy10
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+44.3-mW+62.4-fps+Hyperspectral+Image+Processor+for+Spectral+Unmixing+in+MAV+Remote+Sensing&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Lo%2C+Yu-Chen&rft.au=Wu%2C+Yi-Chung&rft.au=Yang%2C+Chia-Hsiang&rft.date=2025-05-01&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=60&rft.issue=5&rft.spage=1818&rft.epage=1829&rft_id=info:doi/10.1109%2FJSSC.2024.3456889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSSC_2024_3456889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon