Antibacterial efficiency of the curcumin-mediated photodynamic inactivation coupled with L-arginine against Vibrio parahaemolyticus and its application on shrimp

The aim of this study was to investigate the antibacterial potency of a novel photodynamic inactivation (PDI) system with an enhanced bactericidal ability against Vibrio parahaemolyticus in vitro and in vivo. The synergistically bactericidal action of curcumin (Cur) and L-arginine (L-Arg) was firstl...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of food microbiology Vol. 411; p. 110539
Main Authors Wang, Jing Jing, He, Tiantian, Chen, Lu, Xu, Guizhi, Dong, Shuliang, Zhao, Yong, Zheng, Huaming, Liu, Yang, Zeng, Qiaohui
Format Journal Article
LanguageEnglish
Published Netherlands 02.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this study was to investigate the antibacterial potency of a novel photodynamic inactivation (PDI) system with an enhanced bactericidal ability against Vibrio parahaemolyticus in vitro and in vivo. The synergistically bactericidal action of curcumin (Cur) and L-arginine (L-Arg) was firstly investigated, and then a novel curcumin-mediated PDI coupled with L-Arg was developed. Meanwhile, its potent inactivation mechanism against V. parahaemolyticus and preservation effects on shrimp were explored. Results showed that L-Arg disrupted the cell membrane by binding to membrane phospholipids and disrupting iron homeostasis, which helped curcumin to damage DNA and interrupt protein synthesis. Once irradiated by blue LED, the curcumin-mediated PDI produced the reactive oxygen species (ROS) which reacted with L-Arg to generate NO, and the NO was converted to reactive nitrogen species (RNS) with a strong bactericidal ability by consuming ROS. On this basis, the curcumin-mediated PDI coupled with L-Arg potently killed >8.0 Log CFU/mL with 8 μM curcumin, 0.5 mg/mL L-Arg and 1.2 J/cm irradiation. Meanwhile, this PDI also effectively inhibited the colour and pH changes, lipids oxidation and protein degradation of shrimp. Therefore, this study proposes a new potent PDI system to control microbial contamination in the food industry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0168-1605
1879-3460
DOI:10.1016/j.ijfoodmicro.2023.110539