Planar Multi-Link Swimmers: Experiments and Theoretical Investigation using “Perfect Fluid” Model

Robotic swimmers are currently a subject of extensive research and development for several underwater applications. Clever design and planning must rely on simple theoretical models that account for the swimmer’s hydrodynamics in order to optimize its structure and control inputs. In this work, we s...

Full description

Saved in:
Bibliographic Details
Published inRobotica Vol. 37; no. 8; pp. 1289 - 1301
Main Authors Virozub, Evgenia, Wiezel, Oren, Wolf, Alon, Or, Yizhar
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Robotic swimmers are currently a subject of extensive research and development for several underwater applications. Clever design and planning must rely on simple theoretical models that account for the swimmer’s hydrodynamics in order to optimize its structure and control inputs. In this work, we study a planar snake-like multi-link swimmer by using the “perfect fluid” model that accounts for inertial hydrodynamic forces while neglecting viscous drag effects. The swimmer’s dynamic equations of motion are formulated and reduced into a first-order system due to symmetries and conservation of generalized momentum variables. Focusing on oscillatory inputs of joint angles, we study optimal gaits for 3-link and 5-link swimmers via numerical integration. For the 3-link swimmer, we also provide a small-amplitude asymptotic solution which enables obtaining closed-form approximations for optimal gaits. The theoretical results are then corroborated by experiments and motion measurement of untethered robotic prototypes with three and five links floating in a water pool, showing a reasonable agreement between the experiments and the theoretical model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0263-5747
1469-8668
DOI:10.1017/S0263574718001510