Impact of single nucleotide polymorphisms (SNPs) in antioxidant-enzyme genes on the concentrations of folate, homocysteine and glutathione in plasma from healthy subjects after folic acid supplementation – a randomized controlled crossover trial

One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme g...

Full description

Saved in:
Bibliographic Details
Published inGenes & nutrition Vol. 20; no. 1; p. 1
Main Authors Mansoor, Mohammad Azam, Stea, Tonje Holte, Slettan, Audun, Perera, Erandie, Maddumage, Ridmi, Kottahachchi, Darshana, Ali, Dhikra Saleem, Cabo, Rona, Blomhoff, Rune
Format Journal Article
LanguageEnglish
Published Germany BioMed Central 21.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid. In a randomized, double blind, crossover study, healthy subjects received 0.8 mg folic acid per day or a placebo for two weeks. Twenty-four male, and sixty-seven female subjects participated in this study. Participants were aged 36.4 ± 14.8 years (mean ± SD). We studied SNPs in six genes by PCR methods. The concentrations of s-folate, p-tHcy and p-tGSH were measured in fasting samples with Cobas and an HPLC-fluorescence method. Student T-tests and ANOVA were used for the statistical calculations. The subjects with SNP (rs4880) in superoxide dismutase (SOD2) gene (CC) allele had higher concentrations of s-folate and lower concentrations of p-tHcy than subjects with (CT + TT) alleles, (p = 0.014 and p = 0.012). Contrary to SOD2 (CC) allele, the subjects with SNP (rs1001179) catalase (CAT) CC allele had lower concentrations of s-folate (p = 0.029), higher concentrations of p-tGSH (0.017) and higher concentrations of p-tHcy before and after folic acid supplementations (p = 0.015, p = 0.017) than the subjects with (CT + TT) allele. Glutathione transferase (theta)1 (GST-T1) genotype was associated with higher concentrations of s-folate than GST-T0 before (p = 0.025) and after folic acid supplementation (p = 0.047). SNP (rs1050450) in glutathione peroxidase (GPX1) had also impact on the concentrations of p-tGSH (p = 0.011) in healthy subjects. SNPs in SOD2 (rs4880), CAT (rs1001179), and GST1 impact the concentrations of s-folate, and p-tHcy in healthy subjects before and after folic acid supplementation. Our findings suggest that SNPs in antioxidant-genes have a role in health and disease by impacting the concentrations of s-folate, p-tHcy and p-tGSH.
AbstractList One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid.BACKGROUNDOne-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid.In a randomized, double blind, crossover study, healthy subjects received 0.8 mg folic acid per day or a placebo for two weeks. Twenty-four male, and sixty-seven female subjects participated in this study. Participants were aged 36.4 ± 14.8 years (mean ± SD). We studied SNPs in six genes by PCR methods. The concentrations of s-folate, p-tHcy and p-tGSH were measured in fasting samples with Cobas and an HPLC-fluorescence method. Student T-tests and ANOVA were used for the statistical calculations.METHODSIn a randomized, double blind, crossover study, healthy subjects received 0.8 mg folic acid per day or a placebo for two weeks. Twenty-four male, and sixty-seven female subjects participated in this study. Participants were aged 36.4 ± 14.8 years (mean ± SD). We studied SNPs in six genes by PCR methods. The concentrations of s-folate, p-tHcy and p-tGSH were measured in fasting samples with Cobas and an HPLC-fluorescence method. Student T-tests and ANOVA were used for the statistical calculations.The subjects with SNP (rs4880) in superoxide dismutase (SOD2) gene (CC) allele had higher concentrations of s-folate and lower concentrations of p-tHcy than subjects with (CT + TT) alleles, (p = 0.014 and p = 0.012). Contrary to SOD2 (CC) allele, the subjects with SNP (rs1001179) catalase (CAT) CC allele had lower concentrations of s-folate (p = 0.029), higher concentrations of p-tGSH (0.017) and higher concentrations of p-tHcy before and after folic acid supplementations (p = 0.015, p = 0.017) than the subjects with (CT + TT) allele. Glutathione transferase (theta)1 (GST-T1) genotype was associated with higher concentrations of s-folate than GST-T0 before (p = 0.025) and after folic acid supplementation (p = 0.047). SNP (rs1050450) in glutathione peroxidase (GPX1) had also impact on the concentrations of p-tGSH (p = 0.011) in healthy subjects.MAIN FINDINGSThe subjects with SNP (rs4880) in superoxide dismutase (SOD2) gene (CC) allele had higher concentrations of s-folate and lower concentrations of p-tHcy than subjects with (CT + TT) alleles, (p = 0.014 and p = 0.012). Contrary to SOD2 (CC) allele, the subjects with SNP (rs1001179) catalase (CAT) CC allele had lower concentrations of s-folate (p = 0.029), higher concentrations of p-tGSH (0.017) and higher concentrations of p-tHcy before and after folic acid supplementations (p = 0.015, p = 0.017) than the subjects with (CT + TT) allele. Glutathione transferase (theta)1 (GST-T1) genotype was associated with higher concentrations of s-folate than GST-T0 before (p = 0.025) and after folic acid supplementation (p = 0.047). SNP (rs1050450) in glutathione peroxidase (GPX1) had also impact on the concentrations of p-tGSH (p = 0.011) in healthy subjects.SNPs in SOD2 (rs4880), CAT (rs1001179), and GST1 impact the concentrations of s-folate, and p-tHcy in healthy subjects before and after folic acid supplementation. Our findings suggest that SNPs in antioxidant-genes have a role in health and disease by impacting the concentrations of s-folate, p-tHcy and p-tGSH.CONCLUSIONSNPs in SOD2 (rs4880), CAT (rs1001179), and GST1 impact the concentrations of s-folate, and p-tHcy in healthy subjects before and after folic acid supplementation. Our findings suggest that SNPs in antioxidant-genes have a role in health and disease by impacting the concentrations of s-folate, p-tHcy and p-tGSH.
One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid. In a randomized, double blind, crossover study, healthy subjects received 0.8 mg folic acid per day or a placebo for two weeks. Twenty-four male, and sixty-seven female subjects participated in this study. Participants were aged 36.4 ± 14.8 years (mean ± SD). We studied SNPs in six genes by PCR methods. The concentrations of s-folate, p-tHcy and p-tGSH were measured in fasting samples with Cobas and an HPLC-fluorescence method. Student T-tests and ANOVA were used for the statistical calculations. The subjects with SNP (rs4880) in superoxide dismutase (SOD2) gene (CC) allele had higher concentrations of s-folate and lower concentrations of p-tHcy than subjects with (CT + TT) alleles, (p = 0.014 and p = 0.012). Contrary to SOD2 (CC) allele, the subjects with SNP (rs1001179) catalase (CAT) CC allele had lower concentrations of s-folate (p = 0.029), higher concentrations of p-tGSH (0.017) and higher concentrations of p-tHcy before and after folic acid supplementations (p = 0.015, p = 0.017) than the subjects with (CT + TT) allele. Glutathione transferase (theta)1 (GST-T1) genotype was associated with higher concentrations of s-folate than GST-T0 before (p = 0.025) and after folic acid supplementation (p = 0.047). SNP (rs1050450) in glutathione peroxidase (GPX1) had also impact on the concentrations of p-tGSH (p = 0.011) in healthy subjects. SNPs in SOD2 (rs4880), CAT (rs1001179), and GST1 impact the concentrations of s-folate, and p-tHcy in healthy subjects before and after folic acid supplementation. Our findings suggest that SNPs in antioxidant-genes have a role in health and disease by impacting the concentrations of s-folate, p-tHcy and p-tGSH.
BACKGROUND: One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid. METHODS: In a randomized, double blind, crossover study, healthy subjects received 0.8 mg folic acid per day or a placebo for two weeks. Twenty-four male, and sixty-seven female subjects participated in this study. Participants were aged 36.4 ± 14.8 years (mean ± SD). We studied SNPs in six genes by PCR methods. The concentrations of s-folate, p-tHcy and p-tGSH were measured in fasting samples with Cobas and an HPLC-fluorescence method. Student T-tests and ANOVA were used for the statistical calculations. MAIN FINDINGS: The subjects with SNP (rs4880) in superoxide dismutase (SOD2) gene (CC) allele had higher concentrations of s-folate and lower concentrations of p-tHcy than subjects with (CT + TT) alleles, (p = 0.014 and p = 0.012). Contrary to SOD2 (CC) allele, the subjects with SNP (rs1001179) catalase (CAT) CC allele had lower concentrations of s-folate (p = 0.029), higher concentrations of p-tGSH (0.017) and higher concentrations of p-tHcy before and after folic acid supplementations (p = 0.015, p = 0.017) than the subjects with (CT + TT) allele. Glutathione transferase (theta)1 (GST-T1) genotype was associated with higher concentrations of s-folate than GST-T0 before (p = 0.025) and after folic acid supplementation (p = 0.047). SNP (rs1050450) in glutathione peroxidase (GPX1) had also impact on the concentrations of p-tGSH (p = 0.011) in healthy subjects. CONCLUSION: SNPs in SOD2 (rs4880), CAT (rs1001179), and GST1 impact the concentrations of s-folate, and p-tHcy in healthy subjects before and after folic acid supplementation. Our findings suggest that SNPs in antioxidant-genes have a role in health and disease by impacting the concentrations of s-folate, p-tHcy and p-tGSH.
ArticleNumber 1
Author Kottahachchi, Darshana
Stea, Tonje Holte
Cabo, Rona
Ali, Dhikra Saleem
Slettan, Audun
Maddumage, Ridmi
Mansoor, Mohammad Azam
Blomhoff, Rune
Perera, Erandie
Author_xml – sequence: 1
  givenname: Mohammad Azam
  surname: Mansoor
  fullname: Mansoor, Mohammad Azam
– sequence: 2
  givenname: Tonje Holte
  surname: Stea
  fullname: Stea, Tonje Holte
– sequence: 3
  givenname: Audun
  surname: Slettan
  fullname: Slettan, Audun
– sequence: 4
  givenname: Erandie
  surname: Perera
  fullname: Perera, Erandie
– sequence: 5
  givenname: Ridmi
  surname: Maddumage
  fullname: Maddumage, Ridmi
– sequence: 6
  givenname: Darshana
  surname: Kottahachchi
  fullname: Kottahachchi, Darshana
– sequence: 7
  givenname: Dhikra Saleem
  surname: Ali
  fullname: Ali, Dhikra Saleem
– sequence: 8
  givenname: Rona
  surname: Cabo
  fullname: Cabo, Rona
– sequence: 9
  givenname: Rune
  surname: Blomhoff
  fullname: Blomhoff, Rune
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39838297$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAQxyNURNuFF-CAfCwSAdvZOPEJoYqPShUgAWfLsScbV_4Itrdie-IdeENegivObqngxmlGmp9-Ho3_p9WRDx6q6jHBzwnp2YtEKGVNjem6xrhjpGb3qpMyaOtmzflR6du2rXve0OPqNKUrjFveNPhBddzwvukp706qXxduliqjMKJk_MYC8ltlIWSjAc3B7lyI82SSS-js0_uP6SkyHkmfTfhmdKk1-JudA7QBDwkFj_IESAWvwOcoC-bT4h6DlRmeoSm4oHYpg_FQNBpt7DbLPBUOFvNsZXISjTE4NIG0edqhtB2uQOWE5JghLiqjkFRGl8k8W3Dlqf1L6Of3H0iiWLzBmRvQyyI5BmuXNoaUwnUR5GikfVjdH6VN8Oi2rqovb15_Pn9XX354e3H-6rJWDelyrQdFGB-khoFKIFRxzNsWM6l5D4wRrdccelBMEty046A57YeeMaqHjrJ-aFbVy4N33g4O9OEsVszROBl3Ikgj_p14M4lNuBaEdC3tyj-tqrNbQwxft5CycCYpsFZ6CNskGsLanuGOrv8DbXvM1wwv6JO_97pb6E8yCkAPwP5wEcY7hGCxxE8c4idK_MQ-foI1vwGTGtck
Cites_doi 10.1016/S0304-3940(02)00780-2
10.1016/0003-2697(92)90456-H
10.1089/ars.2011.3999
10.1016/j.mam.2016.11.007
10.1007/s11033-011-1324-y
10.1074/jbc.M110.205708
10.23736/S0391-1977.17.02632-3
10.1006/abbi.2001.2295
10.1159/000325537
10.1096/fasebj.14.5.791
10.1097/gme.0b013e31822d5b10
10.1093/gerona/glz101
10.1515/hsz-2017-0131
10.1016/j.bbagen.2012.09.018
10.1016/j.clnu.2011.01.003
10.1016/0009-9120(93)90111-I
10.1053/j.ajkd.2009.01.266
10.1161/01.CIR.100.22.2244
10.1016/0925-4439(95)00007-Q
10.1158/1055-9965.EPI-06-0104
10.1016/0076-6879(95)51106-7
10.1038/ncpcardio1211
10.1097/01213011-200505000-00006
10.1016/j.toxlet.2020.11.007
10.1515/BC.2009.033
10.1161/01.ATV.15.2.232
10.1016/S0891-5849(00)00487-1
10.1038/35041687
10.1055/s-2000-8466
10.1016/j.bbagen.2012.11.020
10.1097/00008571-200303000-00004
10.1016/j.cmet.2016.08.009
10.1186/1471-2164-14-867
10.1126/science.210504
10.1098/rstb.1985.0168
10.2174/138920006778017786
10.1007/s12263-015-0456-4
10.1016/j.nut.2014.08.009
10.1159/000028396
10.1371/journal.pone.0118436
10.1016/0014-5793(73)80165-6
10.1161/CIRCRESAHA.117.311182
10.3390/antiox11122348
10.7326/0003-4819-89-1-122
10.1146/annurev-animal-020518-115206
10.3390/nu12092867
10.1016/j.jacc.2005.02.053
10.1016/j.molcel.2021.08.018
10.1016/S0014-5793(00)01669-0
10.1373/clinchem.2012.191791
10.1016/j.abb.2022.109228
10.1002/cphy.c150021
10.1007/s00125-010-2004-5
10.1161/01.STR.0000138022.86509.2d
ContentType Journal Article
Copyright 2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1186/s12263-024-00761-6
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1865-3499
EndPage 1
ExternalDocumentID PMC11752798
39838297
10_1186_s12263_024_00761_6
Genre Journal Article
GroupedDBID ---
.86
.VR
06C
06D
0R~
0VY
1N0
29H
2JY
2WC
2~H
30V
4.4
408
40D
40E
53G
5GY
5VS
67N
67Z
6NX
7RV
7X7
8FI
8FJ
8TC
95.
95~
96X
AAFWJ
AAHBH
AAJSJ
AASML
AAWCG
AAYQN
AAYXX
ABMNI
ABTMW
ABUWG
ACGFS
ACOMO
ADBBV
ADHIR
ADUKV
AEGNC
AENEX
AEOHA
AETLH
AFBBN
AFKRA
AFPKN
AFWTZ
AGQMX
AGWIL
AHBYD
AIIXL
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AOIJS
BA0
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
C6C
CCPQU
CITATION
CS3
CSCUP
DIK
DU5
E3Z
EBLON
EBS
ECGQY
ESBYG
F5P
FYUFA
G-Y
G-Z
GGRSB
GQ7
GROUPED_DOAJ
GX1
HCIFZ
HF~
HG5
HLICF
HMCUK
HMJXF
HRMNR
HYE
HZ~
IJ-
IZQ
I~X
I~Z
J0Z
JBSCW
KOV
KPH
KQ8
M7P
MA-
N9A
NAPCQ
O93
O9I
OK1
PF0
PHGZM
PHGZT
PIMPY
QOS
R9I
RBZ
ROL
RPM
RPX
RSV
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SOJ
T13
TR2
TSK
TUC
U2A
U9L
UG4
UKHRP
VC2
W48
WK8
Z45
ZOVNA
~A9
-56
-5G
-BR
-~C
ACRMQ
ADINQ
C24
FNLPD
GGCAI
GQ6
HG6
NPM
SZN
7X8
PPXIY
PQGLB
7S9
L.6
5PM
ID FETCH-LOGICAL-c317t-dbc169badeb2ae12c9095506ad98e661dd49e8ec6a1035fbd928b8662db7268b3
ISSN 1555-8932
IngestDate Thu Aug 21 18:40:54 EDT 2025
Fri Jul 11 05:51:39 EDT 2025
Fri Jul 11 04:01:00 EDT 2025
Thu Jan 30 12:28:03 EST 2025
Tue Jul 01 01:42:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Allele
Free radicals
P-tHcy
Antioxidant enzymes
P-tGSH
Single nucleotide polymorphisms (SNPs)
Antioxidant-enzyme genes
Folic acid
S-folate
Antioxidant defense system
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-dbc169badeb2ae12c9095506ad98e661dd49e8ec6a1035fbd928b8662db7268b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11752798
PMID 39838297
PQID 3158094604
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11752798
proquest_miscellaneous_3165860724
proquest_miscellaneous_3158094604
pubmed_primary_39838297
crossref_primary_10_1186_s12263_024_00761_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250121
PublicationDateYYYYMMDD 2025-01-21
PublicationDate_xml – month: 1
  year: 2025
  text: 20250121
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: London
PublicationTitle Genes & nutrition
PublicationTitleAlternate Genes Nutr
PublicationYear 2025
Publisher BioMed Central
Publisher_xml – name: BioMed Central
References JM McCord (761_CR19) 1978; 89
I Fridovich (761_CR14) 1978; 201
G Loschen (761_CR13) 1973; 33
A Sutton (761_CR51) 2003; 13
T Huang (761_CR8) 2013; 14
MA Mansoor (761_CR9) 2011; 58
G Loschen (761_CR12) 1973; 354
A Goulas (761_CR47) 2002; 330
C Tian (761_CR48) 2011; 54
L Forsberg (761_CR53) 2001; 389
F Bitarafan (761_CR41) 2019; 44
T Finkel (761_CR20) 2000; 408
J Heinz (761_CR29) 2009; 54
MI Khan (761_CR44) 2010; 16
GS Ducker (761_CR1) 2017; 25
U Forstermann (761_CR21) 2008; 5
H Sies (761_CR23) 1985; 311
R Schnabel (761_CR40) 2005; 45
JM McCord (761_CR17) 1989; 43
L Forsberg (761_CR54) 2001; 30
E Lubos (761_CR39) 2011; 286
T Huang (761_CR7) 2012; 31
T Finkel (761_CR25) 2000; 476
MH Wilson (761_CR45) 2000; 14
R Cabo (761_CR5) 2015; 10
H Shimizu (761_CR28) 2004; 35
DS Wald (761_CR30) 2012; 58
A Sutton (761_CR50) 2005; 15
MA Mansoor (761_CR43) 1992; 200
MA Mansoor (761_CR26) 1995; 15
M Deponte (761_CR35) 2013; 1830
M Broz (761_CR52) 2022; 11
PD Josephy (761_CR58) 2010; 2010
J Ahn (761_CR36) 2006; 15
SJ Mlakar (761_CR46) 2012; 19
S Friso (761_CR3) 2017; 54
JM McCord (761_CR18) 1993; 26
CE Clare (761_CR2) 2019; 7
T Fukai (761_CR37) 2011; 15
J Siegrist (761_CR22) 2017; 121
C Lennicke (761_CR24) 2021; 81
LM Perez (761_CR32) 2020; 75
C Glorieux (761_CR38) 2017; 398
R Cabo (761_CR42) 2015; 31
HM Bolt (761_CR57) 2006; 7
A Meister (761_CR11) 1995; 251
N Ballatori (761_CR33) 2009; 390
R Brigelius-Flohe (761_CR34) 2013; 1830
FM Buratti (761_CR55) 2021; 337
I Fridovich (761_CR15) 2022; 726
JD Hayes (761_CR56) 2000; 61
761_CR4
KS McCully (761_CR27) 2015; 6
M Lagman (761_CR31) 2015; 10
JA Morrison (761_CR59) 1999; 100
A Meister (761_CR10) 1995; 1271
KF Gey (761_CR16) 1986; 37
JD Finkelstein (761_CR6) 2000; 26
C Tian (761_CR49) 2012; 39
References_xml – volume: 43
  start-page: 327
  year: 1989
  ident: 761_CR17
  publication-title: Bibl Nutr Dieta
– volume: 16
  start-page: 2146
  year: 2010
  ident: 761_CR44
  publication-title: Mol Vis
– volume: 330
  start-page: 210
  issue: 2
  year: 2002
  ident: 761_CR47
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(02)00780-2
– volume: 200
  start-page: 218
  issue: 2
  year: 1992
  ident: 761_CR43
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(92)90456-H
– volume: 2010
  year: 2010
  ident: 761_CR58
  publication-title: Hum Genomics Proteomics
– volume: 354
  start-page: 791
  issue: 7
  year: 1973
  ident: 761_CR12
  publication-title: Hoppe Seylers Z Physiol Chem
– volume: 15
  start-page: 1583
  issue: 6
  year: 2011
  ident: 761_CR37
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2011.3999
– volume: 54
  start-page: 28
  year: 2017
  ident: 761_CR3
  publication-title: Mol Aspects Med
  doi: 10.1016/j.mam.2016.11.007
– volume: 37
  start-page: 53
  year: 1986
  ident: 761_CR16
  publication-title: Bibl Nutr Dieta
– volume: 39
  start-page: 5269
  issue: 5
  year: 2012
  ident: 761_CR49
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-011-1324-y
– volume: 286
  start-page: 35407
  issue: 41
  year: 2011
  ident: 761_CR39
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.205708
– volume: 44
  start-page: 310
  issue: 3
  year: 2019
  ident: 761_CR41
  publication-title: Minerva Endocrinol
  doi: 10.23736/S0391-1977.17.02632-3
– volume: 389
  start-page: 84
  issue: 1
  year: 2001
  ident: 761_CR53
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.2001.2295
– volume: 58
  start-page: 68
  issue: 1
  year: 2011
  ident: 761_CR9
  publication-title: Ann Nutr Metab
  doi: 10.1159/000325537
– volume: 14
  start-page: 791
  issue: 5
  year: 2000
  ident: 761_CR45
  publication-title: FASEB J
  doi: 10.1096/fasebj.14.5.791
– volume: 19
  start-page: 368
  issue: 3
  year: 2012
  ident: 761_CR46
  publication-title: Menopause
  doi: 10.1097/gme.0b013e31822d5b10
– volume: 75
  start-page: 1089
  issue: 6
  year: 2020
  ident: 761_CR32
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/glz101
– volume: 398
  start-page: 1095
  issue: 10
  year: 2017
  ident: 761_CR38
  publication-title: Biol Chem
  doi: 10.1515/hsz-2017-0131
– volume: 1830
  start-page: 3217
  issue: 5
  year: 2013
  ident: 761_CR35
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2012.09.018
– volume: 31
  start-page: 448
  issue: 4
  year: 2012
  ident: 761_CR7
  publication-title: Clin Nutr
  doi: 10.1016/j.clnu.2011.01.003
– volume: 26
  start-page: 351
  issue: 5
  year: 1993
  ident: 761_CR18
  publication-title: Clin Biochem
  doi: 10.1016/0009-9120(93)90111-I
– volume: 54
  start-page: 478
  issue: 3
  year: 2009
  ident: 761_CR29
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2009.01.266
– volume: 100
  start-page: 2244
  issue: 22
  year: 1999
  ident: 761_CR59
  publication-title: Circulation
  doi: 10.1161/01.CIR.100.22.2244
– volume: 1271
  start-page: 35
  issue: 1
  year: 1995
  ident: 761_CR10
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0925-4439(95)00007-Q
– volume: 15
  start-page: 1217
  issue: 6
  year: 2006
  ident: 761_CR36
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-06-0104
– volume: 251
  start-page: 3
  year: 1995
  ident: 761_CR11
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(95)51106-7
– volume: 5
  start-page: 338
  issue: 6
  year: 2008
  ident: 761_CR21
  publication-title: Nat Clin Pract Cardiovasc Med
  doi: 10.1038/ncpcardio1211
– volume: 15
  start-page: 311
  issue: 5
  year: 2005
  ident: 761_CR50
  publication-title: Pharmacogenet Genomics
  doi: 10.1097/01213011-200505000-00006
– volume: 337
  start-page: 78
  year: 2021
  ident: 761_CR55
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2020.11.007
– volume: 390
  start-page: 191
  issue: 3
  year: 2009
  ident: 761_CR33
  publication-title: Biol Chem
  doi: 10.1515/BC.2009.033
– volume: 15
  start-page: 232
  issue: 2
  year: 1995
  ident: 761_CR26
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.15.2.232
– volume: 30
  start-page: 500
  issue: 5
  year: 2001
  ident: 761_CR54
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(00)00487-1
– volume: 408
  start-page: 239
  issue: 6809
  year: 2000
  ident: 761_CR20
  publication-title: Nature
  doi: 10.1038/35041687
– volume: 26
  start-page: 219
  issue: 3
  year: 2000
  ident: 761_CR6
  publication-title: Semin Thromb Hemost
  doi: 10.1055/s-2000-8466
– volume: 1830
  start-page: 3289
  issue: 5
  year: 2013
  ident: 761_CR34
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2012.11.020
– volume: 13
  start-page: 145
  issue: 3
  year: 2003
  ident: 761_CR51
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-200303000-00004
– volume: 25
  start-page: 27
  issue: 1
  year: 2017
  ident: 761_CR1
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.009
– volume: 14
  start-page: 867
  year: 2013
  ident: 761_CR8
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-867
– volume: 201
  start-page: 875
  issue: 4359
  year: 1978
  ident: 761_CR14
  publication-title: Science
  doi: 10.1126/science.210504
– volume: 311
  start-page: 617
  issue: 1152
  year: 1985
  ident: 761_CR23
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.1985.0168
– volume: 7
  start-page: 613
  issue: 6
  year: 2006
  ident: 761_CR57
  publication-title: Curr Drug Metab
  doi: 10.2174/138920006778017786
– volume: 10
  start-page: 456
  issue: 3
  year: 2015
  ident: 761_CR5
  publication-title: Genes Nutr
  doi: 10.1007/s12263-015-0456-4
– volume: 31
  start-page: 337
  issue: 2
  year: 2015
  ident: 761_CR42
  publication-title: Nutrition
  doi: 10.1016/j.nut.2014.08.009
– volume: 61
  start-page: 154
  issue: 3
  year: 2000
  ident: 761_CR56
  publication-title: Pharmacology
  doi: 10.1159/000028396
– volume: 10
  issue: 3
  year: 2015
  ident: 761_CR31
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0118436
– volume: 33
  start-page: 84
  issue: 1
  year: 1973
  ident: 761_CR13
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(73)80165-6
– volume: 121
  start-page: 103
  issue: 2
  year: 2017
  ident: 761_CR22
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.311182
– volume: 11
  start-page: 2348
  issue: 12
  year: 2022
  ident: 761_CR52
  publication-title: Antioxidants (Basel)
  doi: 10.3390/antiox11122348
– volume: 89
  start-page: 122
  issue: 1
  year: 1978
  ident: 761_CR19
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-89-1-122
– volume: 7
  start-page: 263
  year: 2019
  ident: 761_CR2
  publication-title: Annu Rev Anim Biosci
  doi: 10.1146/annurev-animal-020518-115206
– ident: 761_CR4
  doi: 10.3390/nu12092867
– volume: 45
  start-page: 1631
  issue: 10
  year: 2005
  ident: 761_CR40
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2005.02.053
– volume: 81
  start-page: 3691
  issue: 18
  year: 2021
  ident: 761_CR24
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2021.08.018
– volume: 476
  start-page: 52
  issue: 1–2
  year: 2000
  ident: 761_CR25
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(00)01669-0
– volume: 58
  start-page: 1488
  issue: 10
  year: 2012
  ident: 761_CR30
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2012.191791
– volume: 726
  year: 2022
  ident: 761_CR15
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2022.109228
– volume: 6
  start-page: 471
  issue: 1
  year: 2015
  ident: 761_CR27
  publication-title: Compr Physiol
  doi: 10.1002/cphy.c150021
– volume: 54
  start-page: 803
  issue: 4
  year: 2011
  ident: 761_CR48
  publication-title: Diabetologia
  doi: 10.1007/s00125-010-2004-5
– volume: 35
  start-page: 2072
  issue: 9
  year: 2004
  ident: 761_CR28
  publication-title: Stroke
  doi: 10.1161/01.STR.0000138022.86509.2d
SSID ssj0059330
Score 2.3607712
Snippet One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism...
BACKGROUND: One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1
SubjectTerms alleles
blood serum
cardiovascular diseases
catalase
cross-over studies
females
folic acid
genotype
glutathione
glutathione peroxidase
glutathione transferase
homocysteine
males
metabolism
methionine
noninsulin-dependent diabetes mellitus
placebos
superoxide dismutase
t-test
Title Impact of single nucleotide polymorphisms (SNPs) in antioxidant-enzyme genes on the concentrations of folate, homocysteine and glutathione in plasma from healthy subjects after folic acid supplementation – a randomized controlled crossover trial
URI https://www.ncbi.nlm.nih.gov/pubmed/39838297
https://www.proquest.com/docview/3158094604
https://www.proquest.com/docview/3165860724
https://pubmed.ncbi.nlm.nih.gov/PMC11752798
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEIBXfVy4IKA8yqMaJIRAxmA7zto-BtRSUAkVbaXcLO_D1FVtV40j0fxnjtyZ2Y2dpKkQcHEs21qvs5-9M7PzYOyF1EEScyncSOS5G0aau0KGPTfXniek5D6XJtvnkO-fhJ9H_dHa2s8Fr6VJI97K6Y1xJf8zqngMx5WiZP9hZLtG8QDu4_jiFkcYt381xp-6EEfS-M-1U1F24roplKbqC6jW479YjEtjWT0aHo7JBlCQ-zH26Ueh8NfV1fSq1FRJWbcrB-SKbp02Oze5HDVgW0jvtC5rSemfSTwlq_t3fEJyYaxt_pELFMfLzIat2CDLK2c8EWfGa8RWJM8pF7GTyULhmYvWgd2A6DqZg7OnqstiqlXrSH9OuzSdk7-pYwqNLArVH03fieGqrS0wN7RX49paJL7Up1lZZsoZTLOyMywh4wbZujrTzn593nSgHyHRjTUPDyZqUs0nkUttijPhHEIxQXrRcBKQj6Jro7Hbb32_76K4tjQZBN4K9PbL7t8835jlr7GPQiwth4curWz67g3JvYdf072Tg4P0eHd0vM42A9RqTGz6qPNI6pNtyaT3nfWrjfGK-bvVOyzLUSvK0XUf3wWh6fgOuz3TdmBg0b3L1nR1j20Nqqypyyt4Ccb_2CzsbLFflmaoc7A0w5xmWKIZXhHLr6GoYJVkMCRDXQGSDMskU9uW5DewyDE2o2CBY2rZcgzEMcw4hpZjMByD4RiIY7jGMbiQwZxjmHMMHcdgOL7PTvZ2jz_su7OiJK5EUbtxlZA-T0SmtAgy7QcyoSSOHs9UEmsUdpUKEx1ryTPf6_VzoZIgFjHngRJRwGPRe8A2KnySRwwkaRN55KOMHIQqSkSio5DL0NN-oiIVbjOnHeL0wuaeSY3OHvPUApEiEKkBIuXb7HlLQYpTBK37ZZWuJ-O05_djLwm5F_7pGlRFuBcFeM1DS053z14S9ygCf5vFS0x1F1CK-uUzVXFqUtVTIuAgSuLHf9G5J-zW_DV9yjaay4l-hhJ_I3bYejSKdtjm-93h4bcd89b8BiTBFmA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+single+nucleotide+polymorphisms+%28SNPs%29+in+antioxidant-enzyme+genes+on+the+concentrations+of+folate%2C+homocysteine+and+glutathione+in+plasma+from+healthy+subjects+after+folic+acid+supplementation+-+a+randomized+controlled+crossover+trial&rft.jtitle=Genes+%26+nutrition&rft.au=Mansoor%2C+Mohammad+Azam&rft.au=Stea%2C+Tonje+Holte&rft.au=Slettan%2C+Audun&rft.au=Perera%2C+Erandie&rft.date=2025-01-21&rft.issn=1555-8932&rft.volume=20&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1186%2Fs12263-024-00761-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1555-8932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1555-8932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1555-8932&client=summon