Impact of single nucleotide polymorphisms (SNPs) in antioxidant-enzyme genes on the concentrations of folate, homocysteine and glutathione in plasma from healthy subjects after folic acid supplementation – a randomized controlled crossover trial

One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme g...

Full description

Saved in:
Bibliographic Details
Published inGenes & nutrition Vol. 20; no. 1; p. 1
Main Authors Mansoor, Mohammad Azam, Stea, Tonje Holte, Slettan, Audun, Perera, Erandie, Maddumage, Ridmi, Kottahachchi, Darshana, Ali, Dhikra Saleem, Cabo, Rona, Blomhoff, Rune
Format Journal Article
LanguageEnglish
Published Germany BioMed Central 21.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid. In a randomized, double blind, crossover study, healthy subjects received 0.8 mg folic acid per day or a placebo for two weeks. Twenty-four male, and sixty-seven female subjects participated in this study. Participants were aged 36.4 ± 14.8 years (mean ± SD). We studied SNPs in six genes by PCR methods. The concentrations of s-folate, p-tHcy and p-tGSH were measured in fasting samples with Cobas and an HPLC-fluorescence method. Student T-tests and ANOVA were used for the statistical calculations. The subjects with SNP (rs4880) in superoxide dismutase (SOD2) gene (CC) allele had higher concentrations of s-folate and lower concentrations of p-tHcy than subjects with (CT + TT) alleles, (p = 0.014 and p = 0.012). Contrary to SOD2 (CC) allele, the subjects with SNP (rs1001179) catalase (CAT) CC allele had lower concentrations of s-folate (p = 0.029), higher concentrations of p-tGSH (0.017) and higher concentrations of p-tHcy before and after folic acid supplementations (p = 0.015, p = 0.017) than the subjects with (CT + TT) allele. Glutathione transferase (theta)1 (GST-T1) genotype was associated with higher concentrations of s-folate than GST-T0 before (p = 0.025) and after folic acid supplementation (p = 0.047). SNP (rs1050450) in glutathione peroxidase (GPX1) had also impact on the concentrations of p-tGSH (p = 0.011) in healthy subjects. SNPs in SOD2 (rs4880), CAT (rs1001179), and GST1 impact the concentrations of s-folate, and p-tHcy in healthy subjects before and after folic acid supplementation. Our findings suggest that SNPs in antioxidant-genes have a role in health and disease by impacting the concentrations of s-folate, p-tHcy and p-tGSH.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1555-8932
1865-3499
DOI:10.1186/s12263-024-00761-6