Inactivation of Malic Enzyme 1 in Endothelial Cells Alleviates Pulmonary Hypertension

Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this st...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 149; no. 17; pp. 1354 - 1371
Main Authors Luo, Ya, Qi, Xianmei, Zhang, Zhenxi, Zhang, Jiawei, Li, Bolun, Shu, Ting, Li, Xiaona, Hu, Huiyuan, Li, Jinqiu, Tang, Qihao, Zhou, Yitian, Wang, Mingyao, Fan, Tianfei, Guo, Wenjun, Liu, Ying, Zhang, Jin, Pang, Junling, Yang, Peiran, Gao, Ran, Chen, Wenhui, Yan, Chen, Xing, Yanjiang, Du, Wenjing, Wang, Jing, Wang, Chen
Format Journal Article
LanguageEnglish
Published United States 23.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this study, we focused on ME1 (malic enzyme 1), a key enzyme linking glycolysis to the tricarboxylic acid cycle. We aimed to determine the role and mechanistic action of ME1 in PH. Global and endothelial-specific knockout mice were used to investigate the role of ME1 in hypoxia- and SU5416/hypoxia (SuHx)-induced PH. Small hairpin RNA and ME1 enzymatic inhibitor (ME1*) were used to study the mechanism of ME1 in pulmonary artery endothelial cells. Downstream key metabolic pathways and mediators of ME1 were identified by metabolomics analysis in vivo and ME1-mediated energetic alterations were examined by Seahorse metabolic analysis in vitro. The pharmacological effect of ME1* on PH treatment was evaluated in PH animal models induced by SuHx. We found that ME1 protein level and enzymatic activity were highly elevated in lung tissues of patients and mice with PH, primarily in vascular endothelial cells. Global knockout of protected mice from developing hypoxia- or SuHx-induced PH. Endothelial-specific deletion similarly attenuated pulmonary vascular remodeling and PH development in mice, suggesting a critical role of endothelial ME1 in PH. Mechanistic studies revealed that ME1 inhibition promoted downstream adenosine production and activated A R-mediated adenosine signaling, which leads to an increase in nitric oxide generation and a decrease in proinflammatory molecule expression in endothelial cells. ME1 inhibition activated adenosine production in an ATP-dependent manner through regulating malate-aspartate NADH (nicotinamide adenine dinucleotide plus hydrogen) shuttle and thereby balancing oxidative phosphorylation and glycolysis. Pharmacological inactivation of ME1 attenuated the progression of PH in both preventive and therapeutic settings by promoting adenosine production in vivo. Our findings indicate that ME1 upregulation in endothelial cells plays a causative role in PH development by negatively regulating adenosine production and subsequently dysregulating endothelial functions. Our findings also suggest that ME1 may represent as a novel pharmacological target for upregulating protective adenosine signaling in PH therapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-7322
1524-4539
DOI:10.1161/CIRCULATIONAHA.123.067579