A compact and economical AMC backed antenna solution for wearable biomedical applications

A rectangular monopole antenna with an extended ground, excited by Coplanar Waveguide (CPW) and backed by a 6 × 6 array of fractal artificial magnetic conductor (AMC) unit cells, resonating at 5.8 GHz in Industrial, Scientific, and Medical (ISM) band, is presented in this manuscript. To attain the o...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of microwave and wireless technologies Vol. 15; no. 9; pp. 1514 - 1523
Main Authors Yadav, Mohit, Ali, Muquaddar, Yadav, R. P.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.11.2023
Subjects
Online AccessGet full text
ISSN1759-0787
1759-0795
DOI10.1017/S1759078723000211

Cover

Loading…
More Information
Summary:A rectangular monopole antenna with an extended ground, excited by Coplanar Waveguide (CPW) and backed by a 6 × 6 array of fractal artificial magnetic conductor (AMC) unit cells, resonating at 5.8 GHz in Industrial, Scientific, and Medical (ISM) band, is presented in this manuscript. To attain the objective of proposing a compact and economical antenna solution for employment in wearable biomedical domain, a novel approach of utilizing both surfaces of the same dielectric for engraving antenna element as well as AMC array is adopted. It results in the elimination of layers of expensive substrate (RO3003) and of thick separator (foam) between antenna and AMC array. During measurement in open space, the proposed antenna system exhibited an impedance bandwidth of 570 MHz with a gain of 7.9 dBi. While a total realized gain of 7.5 dBi, amounting to a gain enhancement of about 3 dB as compared to that of monopole alone, is observed when the integrated antenna system is placed just over a three-layer rectangular human body equivalent model. Specific absorption rate values, as calculated at 5.8 GHz and averaged over 1 and 10 g of human tissue, are 0.0117 and 0.00244 W/kg, respectively. Obtained results strongly advocate the use of the proposed antenna system in smart wearable healthcare devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1759-0787
1759-0795
DOI:10.1017/S1759078723000211