Optical deflection measurement for characterization of microelectromechanical systems (MEMS)

Nonintrusive measurement of small out-of-plane motions of microscale structures is critical to the development of microelectromechanical systems (MEMS). This paper presents a low-cost deflection measurement system for MEMS structures based on a fiber optic displacement sensor. The system is demonstr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 53; no. 4; pp. 1047 - 1051
Main Authors Firebaugh, S.L., Charles, H.K., Edwards, R.L., Keeney, A.C., Wilderson, S.F.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nonintrusive measurement of small out-of-plane motions of microscale structures is critical to the development of microelectromechanical systems (MEMS). This paper presents a low-cost deflection measurement system for MEMS structures based on a fiber optic displacement sensor. The system is demonstrated in the characterization of a microwave switch. The deflection system had a demonstrated sensitivity of 290/spl plusmn/32 /spl mu/V/nm over a deflection range of 100 /spl mu/m. The calibration and linearity of the system are described, and the static and dynamic performance is compared to more elaborate systems.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2004.831504