Complement Membrane Attack Complex: New Roles, Mechanisms of Action, and Therapeutic Targets

The complement membrane attack complex (MAC) is classically known as a cytolytic effector of innate and adaptive immunity that forms pores in the plasma membrane of pathogens or targeted cells, leading to osmolysis. Nucleated cells resist MAC-mediated cytolysis by expression of inhibitors that block...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of pathology Vol. 190; no. 6; pp. 1138 - 1150
Main Authors Xie, Catherine B, Jane-Wit, Dan, Pober, Jordan S
Format Journal Article
LanguageEnglish
Published United States American Society for Investigative Pathology 01.06.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:The complement membrane attack complex (MAC) is classically known as a cytolytic effector of innate and adaptive immunity that forms pores in the plasma membrane of pathogens or targeted cells, leading to osmolysis. Nucleated cells resist MAC-mediated cytolysis by expression of inhibitors that block MAC assembly or by rapid removal of MAC through endocytosis or shedding. In the absence of lysis, MAC may induce intracellular signaling and cell activation, responses implicated in a variety of autoimmune, inflammatory, and transplant disease settings. New discoveries into the structure and biophysical properties of MAC revealed heterogeneous MAC precursors and conformations that provide insights into MAC function. In addition, new mechanisms of MAC-mediated signaling and its contribution to disease pathogenesis have recently come to light. MAC-activated cells have been found to express proinflammatory proteins-often through NF-κB-dependent transcription, assemble inflammasomes, enabling processing, and facilitate secretion of IL-1β and IL-18, as well as other signaling pathways. These recent insights into the mechanisms of action of MAC provide an updated framework to therapeutic approaches that can target MAC assembly, signaling, and proinflammatory effects in various complement-mediated diseases.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0002-9440
1525-2191
DOI:10.1016/j.ajpath.2020.02.006