Cahn–Hilliard equations on an evolving surface

We describe a functional framework suitable to the analysis of the Cahn–Hilliard equation on an evolving surface whose evolution is assumed to be given a priori. The model is derived from balance laws for an order parameter with an associated Cahn–Hilliard energy functional and we establish well-pos...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 32; no. 5; pp. 937 - 1000
Main Authors CAETANO, D., ELLIOTT, C. M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2021
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792521000176

Cover

Loading…
More Information
Summary:We describe a functional framework suitable to the analysis of the Cahn–Hilliard equation on an evolving surface whose evolution is assumed to be given a priori. The model is derived from balance laws for an order parameter with an associated Cahn–Hilliard energy functional and we establish well-posedness for general regular potentials, satisfying some prescribed growth conditions, and for two singular non-linearities – the thermodynamically relevant logarithmic potential and a double-obstacle potential. We identify, for the singular potentials, necessary conditions on the initial data and the evolution of the surfaces for global-in-time existence of solutions, which arise from the fact that integrals of solutions are preserved over time, and prove well-posedness for initial data on a suitable set of admissible initial conditions. We then briefly describe an alternative derivation leading to a model that instead preserves a weighted integral of the solution and explain how our arguments can be adapted in order to obtain global-in-time existence without restrictions on the initial conditions. Some illustrative examples and further research directions are given in the final sections.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0956-7925
1469-4425
DOI:10.1017/S0956792521000176