Characterizations of Morrey type spaces

For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<s<\infty $ , we introduce a Morrey type space of functions analytic in the unit disk $\mathbb {D}$ , denoted by $\mathcal {D}^s_K$ . Some characterizations of $\mathcal {D}^s_K$ are obtained in terms of K-Carleson meas...

Full description

Saved in:
Bibliographic Details
Published inCanadian mathematical bulletin Vol. 65; no. 2; pp. 328 - 344
Main Authors Sun, Fangmei, Wulan, Hasi
Format Journal Article
LanguageEnglish
Published Canada Canadian Mathematical Society 01.06.2022
Cambridge University Press
Subjects
Online AccessGet full text
ISSN0008-4395
1496-4287
DOI10.4153/S0008439521000308

Cover

Abstract For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<s<\infty $ , we introduce a Morrey type space of functions analytic in the unit disk $\mathbb {D}$ , denoted by $\mathcal {D}^s_K$ . Some characterizations of $\mathcal {D}^s_K$ are obtained in terms of K-Carleson measures. A relationship between two spaces $\mathcal {D}^{s_1}_K$ and $\mathcal {D}^{s_2}_K$ is given by fractional order derivatives. As an extension of some known results, for a positive Borel measure $\mu $ on $\mathbb {D}$ , we find sufficient or necessary condition for the embedding map $I: \mathcal {D}^{s}_{K}\mapsto \mathcal {T}^s_{K}(\mu)$ to be bounded.
AbstractList For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<\infty $<="" tex-math=""><\infty>, we introduce a Morrey type space of functions analytic in the unit disk $\mathbb {D}$, denoted by $\mathcal {D}^s_K$. Some characterizations of $\mathcal {D}^s_K$ are obtained in terms of K-Carleson measures. A relationship between two spaces $\mathcal {D}^{s_1}_K$ and $\mathcal {D}^{s_2}_K$ is given by fractional order derivatives. As an extension of some known results, for a positive Borel measure $\mu $ on $\mathbb {D}$, we find sufficient or necessary condition for the embedding map $I: \mathcal {D}^{s}_{K}\mapsto \mathcal {T}^s_{K}(\mu)$ to be bounded.
For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<s<\infty $ , we introduce a Morrey type space of functions analytic in the unit disk $\mathbb {D}$ , denoted by $\mathcal {D}^s_K$ . Some characterizations of $\mathcal {D}^s_K$ are obtained in terms of K -Carleson measures. A relationship between two spaces $\mathcal {D}^{s_1}_K$ and $\mathcal {D}^{s_2}_K$ is given by fractional order derivatives. As an extension of some known results, for a positive Borel measure $\mu $ on $\mathbb {D}$ , we find sufficient or necessary condition for the embedding map $I: \mathcal {D}^{s}_{K}\mapsto \mathcal {T}^s_{K}(\mu)$ to be bounded.
For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<s<\infty $ , we introduce a Morrey type space of functions analytic in the unit disk $\mathbb {D}$ , denoted by $\mathcal {D}^s_K$ . Some characterizations of $\mathcal {D}^s_K$ are obtained in terms of K-Carleson measures. A relationship between two spaces $\mathcal {D}^{s_1}_K$ and $\mathcal {D}^{s_2}_K$ is given by fractional order derivatives. As an extension of some known results, for a positive Borel measure $\mu $ on $\mathbb {D}$ , we find sufficient or necessary condition for the embedding map $I: \mathcal {D}^{s}_{K}\mapsto \mathcal {T}^s_{K}(\mu)$ to be bounded.
Author Wulan, Hasi
Sun, Fangmei
Author_xml – sequence: 1
  givenname: Fangmei
  surname: Sun
  fullname: Sun, Fangmei
  email: 18fmsun@stu.edu.cn
  organization: Department of Mathematics, Shantou University, Shantou 515063, People’s Republic of China e-mail: 18fmsun@stu.edu.cn
– sequence: 2
  givenname: Hasi
  surname: Wulan
  fullname: Wulan, Hasi
  email: wulan@stu.edu.cn
  organization: Department of Mathematics, Shantou University, Shantou 515063, People’s Republic of China e-mail: 18fmsun@stu.edu.cn
BookMark eNp9kEtLw0AUhQepYFr9Ae4CLlxF55lJlhJ8QcWFug430zua0mbizHRRf72JLQiKru6Fc777OFMy6VyHhJwyeiGZEpdPlNJCilJxNnSCFgckYbLMM8kLPSHJKGejfkSmISwpZVpplZDz6g08mIi-_YDYui6kzqYPznvcpnHbYxp6MBiOyaGFVcCTfZ2Rl5vr5-oumz_e3ldX88wIpmPGEAVtLCIqoDaXDRfGWqEXpqRgFUgFpWalpchtI7EUIJjkWheG58PlSszI2W5u7937BkOsl27ju2FlzfO8KFTOtB5cbOcy3oXg0da9b9fgtzWj9ZhH_SuPgdE_GNPGr5ejh3b1Lyn2JKwb3y5e8fuov6lPVt5zUA
CitedBy_id crossref_primary_10_1016_j_bulsci_2023_103314
crossref_primary_10_1080_17476933_2025_2454678
crossref_primary_10_1080_17476933_2024_2426154
crossref_primary_10_1080_17476933_2022_2130278
Cites_doi 10.4171/RMI/326
10.1090/S0002-9947-1938-1501936-8
10.1080/17476930701272764
10.5802/aif.1509
10.1016/0022-1236(69)90022-6
10.5186/aasfm.2013.3801
10.1016/j.jfa.2005.07.004
10.1007/s00020-005-1391-3
10.1002/mana.201300301
10.1016/j.jmaa.2012.12.052
10.1080/17476933.2018.1549036
10.1090/S0002-9939-1986-0861756-X
10.1006/jfan.1999.3490
10.1016/S0022-1236(03)00020-X
10.1007/s11425-014-4811-5
10.1090/surv/138
10.1090/S0002-9947-1988-0957062-1
10.1007/s12220-016-9708-9
10.1007/s00209-008-0338-1
10.2307/1970375
10.1007/s00020-014-2124-2
10.1016/j.aim.2007.08.015
ContentType Journal Article
Copyright Canadian Mathematical Society 2021
Copyright_xml – notice: Canadian Mathematical Society 2021
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8FQ
8FV
ABJCF
ABUWG
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.4153/S0008439521000308
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
Canadian Business & Current Affairs Database (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
CBCA Complete (Alumni Edition)
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
CBCA Complete
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList Engineering Database
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1496-4287
EndPage 344
ExternalDocumentID 10_4153_S0008439521000308
GroupedDBID --Z
-~X
09C
09E
5.9
69Q
6J9
8FQ
AABWE
AAEED
AAGFV
AANRG
AASVR
AAUKB
AAYEQ
AAYJJ
ABBZL
ABCQX
ABGDZ
ABJCF
ABMYL
ABUWG
ABXAU
ABZCX
ABZEH
ACGFO
ACIPV
ACKIV
ACNCT
ACQFJ
ACYZP
ACZWT
ADDNB
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEBPU
AENCP
AETEA
AFKQG
AFKRA
AFLVW
AGABE
AGBYD
AGJUD
AGOOT
AHRGI
AI.
AIDBO
AIOIP
AJCYY
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARZZG
ATUCA
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BLZWO
CCPQU
CCQAD
CCUQV
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
FRP
HCIFZ
HF~
IH6
IOO
JHPGK
KCGVB
KFECR
L7B
LW7
M7S
MVM
NZEOI
OHT
OK1
P2P
PTHSS
RCA
RCD
ROL
S10
TR2
UPT
VH1
WFFJZ
WH7
XJT
ZCG
ZMEZD
0R~
AAYXX
ABVKB
ABVZP
ABXHF
ACDLN
ADIYS
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-1ee30bfeee5a0f64b23cff37dc90af5a45a9719f0e2fb4e93a3142778c2621053
IEDL.DBID 8FG
ISSN 0008-4395
IngestDate Fri Jul 25 10:59:50 EDT 2025
Tue Jul 01 03:30:20 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Wed Mar 13 06:01:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Morrey type space
30D99
47B38
fractional order derivative
embedding map
30H25
K-Carleson measure
30D45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-1ee30bfeee5a0f64b23cff37dc90af5a45a9719f0e2fb4e93a3142778c2621053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2668856177
PQPubID 4573633
PageCount 17
ParticipantIDs proquest_journals_2668856177
crossref_primary_10_4153_S0008439521000308
crossref_citationtrail_10_4153_S0008439521000308
cambridge_journals_10_4153_S0008439521000308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Montreal
PublicationTitle Canadian mathematical bulletin
PublicationTitleAlternate Can. Math. Bull
PublicationYear 2022
Publisher Canadian Mathematical Society
Cambridge University Press
Publisher_xml – name: Canadian Mathematical Society
– name: Cambridge University Press
References 1938; 43
2002; 18
2015; 18
1986; 98
2006; 55
2017; 27
2015; 288
1980; 24
2013; 401
1964; 4
2006; 230
1999; 169
1962; 76
2007; 52
1988; 309
1993; 37
1974; 47
2013; 38
2019; 64
2002; 46
2003; 69
2008; 217
2014; 57
2009; 261
1996; 46
2003; 201
2014; 78
S0008439521000308_r31
S0008439521000308_r30
S0008439521000308_r11
Wulan (S0008439521000308_r25) 2017
Oleinik (S0008439521000308_r13) 1974; 47
S0008439521000308_r10
S0008439521000308_r12
S0008439521000308_r15
S0008439521000308_r14
S0008439521000308_r17
S0008439521000308_r16
S0008439521000308_r18
S0008439521000308_r7
S0008439521000308_r8
S0008439521000308_r9
S0008439521000308_r3
Zhao (S0008439521000308_r29) 2003; 69
Xiao (S0008439521000308_r26) 2001
S0008439521000308_r5
S0008439521000308_r6
Rochberg (S0008439521000308_r20) 1993; 37
S0008439521000308_r22
S0008439521000308_r24
S0008439521000308_r23
S0008439521000308_r28
Qian (S0008439521000308_r19) 2015; 18
S0008439521000308_r1
S0008439521000308_r2
Essén (S0008439521000308_r4) 2002; 46
Stegenga (S0008439521000308_r21) 1980; 24
Xiao (S0008439521000308_r27) 2006
References_xml – volume: 64
  start-page: 1686
  year: 2019
  end-page: 1702
  article-title: A family of Dirichlet-Morrey spaces
  publication-title: Complex Var. Elliptic Equ.
– volume: 37
  start-page: 101
  year: 1993
  end-page: 122
  article-title: A new characterization of Dirichlet type spaces and applications
  publication-title: Ill. J. Math.
– volume: 38
  start-page: 193
  year: 2013
  end-page: 207
  article-title: ${{\mathcal{Q}}}_K$ and Morrey type spaces
  publication-title: Ann. Acad. Sci. Fenn. Math.
– volume: 43
  start-page: 126
  year: 1938
  end-page: 166
  article-title: On the solutions of quasi-linear elliptic partial differential equations
  publication-title: Trans. Amer. Math. Soc.
– volume: 261
  start-page: 545
  year: 2009
  end-page: 555
  article-title: Multipliers of Möbius invariant ${{\mathcal{Q}}}_s$ spaces
  publication-title: Math. Z.
– volume: 52
  start-page: 629
  year: 2007
  end-page: 653
  article-title: Preduals of ${{\mathcal{Q}}}_p$ -spaces. II. Carleson imbeddings and atomic decompositions
  publication-title: Complex Var. Elliptic Equ.
– volume: 24
  start-page: 113
  year: 1980
  end-page: 139
  article-title: Multipliers of the Dirichlet space
  publication-title: Ill. J. Math.
– volume: 55
  start-page: 415
  year: 2006
  end-page: 427
  article-title: Carleson measures for spaces of Dirichlet type
  publication-title: Integr. Equ. Oper. Theor.
– volume: 401
  start-page: 682
  year: 2013
  end-page: 694
  article-title: Composition operators acting on weighted Dirichlet spaces
  publication-title: J. Math. Anal. Appl.
– volume: 57
  start-page: 1961
  year: 2014
  end-page: 1974
  article-title: Integral operators on analytic Morrey spaces
  publication-title: Sci. China Math.
– volume: 4
  start-page: 71
  year: 1964
  end-page: 87
  article-title: On the theory of ${L}_{p,\lambda }$ spaces
  publication-title: J. Funct. Anal.
– volume: 18
  start-page: 443
  year: 2002
  end-page: 510
  article-title: Carleson measures for analytic Besov spaces
  publication-title: Rev. Mat. Iberoam.
– volume: 169
  start-page: 148
  year: 1999
  end-page: 163
  article-title: Carleson measures and multipliers for Dirichlet spaces
  publication-title: J. Funct. Anal.
– volume: 78
  start-page: 483
  year: 2014
  end-page: 514
  article-title: Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces
  publication-title: Integr. Equ. Oper. Theory
– volume: 69
  start-page: 605
  year: 2003
  end-page: 618
  article-title: On logarithmic Carleson measures
  publication-title: Acta Sci. Math. (Szeged)
– volume: 201
  start-page: 282
  year: 2003
  end-page: 297
  article-title: $Q$ spaces and Morrey spaces
  publication-title: J. Funct. Anal.
– volume: 47
  start-page: 120
  year: 1974
  end-page: 137
  article-title: Embedding theorems for weighted classes of harmonic and analytic functions (in Russian)
  publication-title: Zap. Nauch. Sem. LOMI Steklov
– volume: 46
  start-page: 1233
  year: 2002
  end-page: 1258
  article-title: On analytic and meromorphic functions and spaces of ${{\mathcal{Q}}}_K$ type
  publication-title: Ill. J. Math.
– volume: 288
  start-page: 1673
  year: 2015
  end-page: 1693
  article-title: Properties of analytic Morrey spaces and applications
  publication-title: Math. Nachr.
– volume: 46
  start-page: 111
  year: 1996
  end-page: 137
  article-title: Pointwise multipliers and corona type decomposition in BMOA
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 217
  start-page: 2075
  year: 2008
  end-page: 2088
  article-title: The ${{\mathcal{Q}}}_p$ Carleson measure problem
  publication-title: Adv. Math.
– volume: 309
  start-page: 87
  year: 1988
  end-page: 98
  article-title: Carleson measures and multipliers of Dirichlet-type spaces
  publication-title: Trans. Amer. Math. Soc.
– volume: 18
  start-page: 1589
  year: 2015
  end-page: 1599
  article-title: Volterra type operators on Morrey type spaces
  publication-title: Math. Ineq. Appl.
– volume: 76
  start-page: 547
  year: 1962
  end-page: 559
  article-title: Interpolations by bounded analytic functions and the corona problem
  publication-title: Ann. Math.
– volume: 230
  start-page: 78
  year: 2006
  end-page: 115
  article-title: Several function-theoretic characterizations of Möbius invariant ${{\mathcal{Q}}}_K$ spaces
  publication-title: J. Funct. Anal.
– volume: 27
  start-page: 1013
  year: 2017
  end-page: 1028
  article-title: Embedding of Möbius invariant function spaces into tent spaces
  publication-title: J. Geom. Anal.
– volume: 98
  start-page: 586
  year: 1986
  end-page: 592
  article-title: Morrey space
  publication-title: Proc. Amer. Math. Soc.
– volume: 24
  start-page: 113
  year: 1980
  ident: S0008439521000308_r21
  article-title: Multipliers of the Dirichlet space
  publication-title: Ill. J. Math.
– ident: S0008439521000308_r2
  doi: 10.4171/RMI/326
– ident: S0008439521000308_r12
  doi: 10.1090/S0002-9947-1938-1501936-8
– ident: S0008439521000308_r1
  doi: 10.1080/17476930701272764
– volume: 69
  start-page: 605
  year: 2003
  ident: S0008439521000308_r29
  article-title: On logarithmic Carleson measures
  publication-title: Acta Sci. Math. (Szeged)
– volume: 47
  start-page: 120
  year: 1974
  ident: S0008439521000308_r13
  article-title: Embedding theorems for weighted classes of harmonic and analytic functions (in Russian)
  publication-title: Zap. Nauch. Sem. LOMI Steklov
– year: 2017
  ident: S0008439521000308_r25
– ident: S0008439521000308_r14
  doi: 10.5802/aif.1509
– ident: S0008439521000308_r18
  doi: 10.1016/0022-1236(69)90022-6
– ident: S0008439521000308_r24
  doi: 10.5186/aasfm.2013.3801
– ident: S0008439521000308_r5
  doi: 10.1016/j.jfa.2005.07.004
– ident: S0008439521000308_r7
  doi: 10.1007/s00020-005-1391-3
– ident: S0008439521000308_r10
  doi: 10.1002/mana.201300301
– ident: S0008439521000308_r16
  doi: 10.1016/j.jmaa.2012.12.052
– volume: 46
  start-page: 1233
  year: 2002
  ident: S0008439521000308_r4
  article-title: On analytic and meromorphic functions and spaces of ${{\mathcal{Q}}}_K$ type
  publication-title: Ill. J. Math.
– ident: S0008439521000308_r6
  doi: 10.1080/17476933.2018.1549036
– ident: S0008439521000308_r31
  doi: 10.1090/S0002-9939-1986-0861756-X
– ident: S0008439521000308_r22
  doi: 10.1006/jfan.1999.3490
– ident: S0008439521000308_r23
  doi: 10.1016/S0022-1236(03)00020-X
– ident: S0008439521000308_r9
  doi: 10.1007/s11425-014-4811-5
– ident: S0008439521000308_r30
  doi: 10.1090/surv/138
– ident: S0008439521000308_r8
  doi: 10.1090/S0002-9947-1988-0957062-1
– ident: S0008439521000308_r11
  doi: 10.1007/s12220-016-9708-9
– volume: 37
  start-page: 101
  year: 1993
  ident: S0008439521000308_r20
  article-title: A new characterization of Dirichlet type spaces and applications
  publication-title: Ill. J. Math.
– ident: S0008439521000308_r15
  doi: 10.1007/s00209-008-0338-1
– year: 2001
  ident: S0008439521000308_r26
– year: 2006
  ident: S0008439521000308_r27
– ident: S0008439521000308_r3
  doi: 10.2307/1970375
– ident: S0008439521000308_r17
  doi: 10.1007/s00020-014-2124-2
– ident: S0008439521000308_r28
  doi: 10.1016/j.aim.2007.08.015
– volume: 18
  start-page: 1589
  year: 2015
  ident: S0008439521000308_r19
  article-title: Volterra type operators on Morrey type spaces
  publication-title: Math. Ineq. Appl.
SSID ssj0017575
Score 2.2906256
Snippet For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<s<\infty $ , we introduce a Morrey type space of functions analytic in the unit...
For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<\infty $<="" tex-math=""><\infty>, we introduce a Morrey type space of functions...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 328
SubjectTerms Fractional calculus
Mathematical analysis
Partial differential equations
Title Characterizations of Morrey type spaces
URI https://www.cambridge.org/core/product/identifier/S0008439521000308/type/journal_article
https://www.proquest.com/docview/2668856177
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XfQg_sTpHD0Ighhs86NJT6JjcwgbIg52K0manGSbbh78731ps84h7Nq-QPPyeF_6kvd9CF17SjlppL9TlTjM0jTDktECJ6lUhJOi0KU24HCUDsbsZcInoeC2CNcqVzmxTNTFzPga-T0AiZQA9kI8zD-xV43yp6tBQmMXNRMw8HEu-8_1KYLgolIwiCUG4OXVqSZAFvUdwrH0z0hScbb85VbYxKjNFF3iTv8QHYQNY_RYrfAR2rHTY7Q_rNlWFyfopluzLoemymjmoqHX3fiJfI01grQB-eAUjfu99-4ABwEEbADWlzixlsbaWWu5il3KNKHGOSoKk8XKccW4ykSSudgSp5nNqKIJI0JIQ1KYF6dnqDGdTe05iqzSidYaLKgCSzCHLEcYFwb8WlDaQnf19PMQxosc_hC8t_J_3mqheOWh3AQyca9p8bFtyG09ZF4xaWwzbq_cvv6adQhcbH99ifaI71IoiyVt1Fh-fdsr2DssdacMkA5qPvVGr2-_ZXm8Fw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5Ke1AP4hMfVXNQBDGY7G6ym4OI1pZqmyKi4C1mk92TtGor0j_lb3Q2Ly1Cb16TWUhmZ-fb13wfwKGhlBOJMHeqXG0z3w9swWhqu76IiUfSVGbagOHA7z6y2yfvqQZfZS2MuVZZ5sQsUaejxOyRnyGQCIFgz_nF65ttVKPM6WopoZGHRU9NP3HJNj6_ucb-PSKk035ode1CVcBOECsntqsUdaRWSnmxo30mCU20pjxNAifWXsy8OOBuoB1FtGQqoDF1GeFcJMTH9ZFRicCU32CmorUOjav24O6-OrfgHs81ExxhI9R7-TkqgiQ1NcmOMM-Im7PE_GZzmEXFWVDIkK6zAsvFFNW6zGNqFWpquAZLYcXvOl6H41bF81yUcVojbYVG6WNqmV1dCxMVZqANePwX52xCfTgaqi2wVCxdKSVa0Bgt0RzzKmEeT7AnU0q34bT6_agYOOMI1yTGW9Efb22DU3ooSgr6cqOi8TKvyUnV5DXn7phn3Czd_vM1P0G3M__1ASx0H8J-1L8Z9HZhkZgaiWyrpgn1yfuH2sOZy0TuF-FiwfN_R-g3ajb5Pg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS8MwFA5jguhB_InTqT0ogljWJmmTHkRkWjfnhgcHu9WkTU6yTTeR_Wv-db701xzCbru2L9C-vL6vL8n7PoTODaUcj7k5U-Vqm_p-YHNKEtv1ucAeThKZagN2e36rT58G3qCCfopeGHOsssiJaaJORrFZI28AkHAOYM9YQ-fHIl7uw9vxh20UpMxOayGnkYVIR82-oXyb3LTvYa4vMA4fXpstO1cYsGPAzantKkUcqZVSnnC0TyUmsdaEJXHgCO0J6omAuYF2FNaSqoAI4lLMGI-xD7WSUYyA9L_GCAtM4cfDx3IHg3ksU09wuA2g72U7qgCXxHQnO9xcw27GF_OX12ERHxfhIcW8cBtt5T-r1l0WXTuoooa7aLNbMr1O9tBls2R8zhs6rZG2ukbzY2aZ9V0LUhbkon3UX4lrDlB1OBqqQ2QpIV0pJVgQAZZgDhkWU4_FMKcJITV0Xb5-lH9CkwiqE-Ot6J-3asgpPBTFOZG50dN4Xzbkqhwyzlg8lhnXC7fPn2YefkfLb5-hdYjL6Lnd6xyjDWyaJdI1mzqqTj-_1An8wkzlaRorFnpbdXD-ArgM_A4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizations+of+Morrey+type+spaces&rft.jtitle=Canadian+mathematical+bulletin&rft.au=Sun%2C+Fangmei&rft.au=Wulan%2C+Hasi&rft.date=2022-06-01&rft.pub=Cambridge+University+Press&rft.issn=0008-4395&rft.volume=65&rft.issue=2&rft.spage=328&rft.epage=344&rft_id=info:doi/10.4153%2FS0008439521000308&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4395&client=summon