Characterizations of Morrey type spaces
For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<s<\infty $ , we introduce a Morrey type space of functions analytic in the unit disk $\mathbb {D}$ , denoted by $\mathcal {D}^s_K$ . Some characterizations of $\mathcal {D}^s_K$ are obtained in terms of K-Carleson meas...
Saved in:
Published in | Canadian mathematical bulletin Vol. 65; no. 2; pp. 328 - 344 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Canada
Canadian Mathematical Society
01.06.2022
Cambridge University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0008-4395 1496-4287 |
DOI | 10.4153/S0008439521000308 |
Cover
Loading…
Summary: | For a nondecreasing function
$K: [0, \infty)\rightarrow [0, \infty)$
and
$0<s<\infty $
, we introduce a Morrey type space of functions analytic in the unit disk
$\mathbb {D}$
, denoted by
$\mathcal {D}^s_K$
. Some characterizations of
$\mathcal {D}^s_K$
are obtained in terms of K-Carleson measures. A relationship between two spaces
$\mathcal {D}^{s_1}_K$
and
$\mathcal {D}^{s_2}_K$
is given by fractional order derivatives. As an extension of some known results, for a positive Borel measure
$\mu $
on
$\mathbb {D}$
, we find sufficient or necessary condition for the embedding map
$I: \mathcal {D}^{s}_{K}\mapsto \mathcal {T}^s_{K}(\mu)$
to be bounded. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/S0008439521000308 |