Topological Conversion of Nickel Foams to Monolithic Single‐Atom Catalysts
Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial appl...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial applications. However, traditional synthesis methods mainly obtain low‐yield powder catalysts without macroscopic mechanical strength, and also require tedious procedures, limiting their practicability. Here, monolithic carbon fibers are prepared with single atomic Ni sites directly from bulk metal. The synchronous support growth and metal diffusion realizes the effective atomization of nickel foam, and the innovative strategy of topological growth within a confined space results in robust and tough monolith. The application of this single‐atom‐monolith is demonstrated as a free‐standing electrode for highly efficient electrochemical CO2 reduction. The proposed synthesis strategy allows feasible preparation of functional single‐atom catalysts for potential industrial applications with advantages of using low‐cost raw materials, enabling large‐scale production, and providing processable, moldable monolithic materials.
An innovative topological conversion strategy is proposed to synthesize monolithic single‐atom catalysts directly from nickel foam. This single‐atom catalysts exhibits macroscopic structure with high mechanical strength, uniformly distributed single atom sites, and superior electrocatalytic performance as a free‐standing electrode for CO2 reduction. |
---|---|
AbstractList | Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial applications. However, traditional synthesis methods mainly obtain low‐yield powder catalysts without macroscopic mechanical strength, and also require tedious procedures, limiting their practicability. Here, monolithic carbon fibers are prepared with single atomic Ni sites directly from bulk metal. The synchronous support growth and metal diffusion realizes the effective atomization of nickel foam, and the innovative strategy of topological growth within a confined space results in robust and tough monolith. The application of this single‐atom‐monolith is demonstrated as a free‐standing electrode for highly efficient electrochemical CO2 reduction. The proposed synthesis strategy allows feasible preparation of functional single‐atom catalysts for potential industrial applications with advantages of using low‐cost raw materials, enabling large‐scale production, and providing processable, moldable monolithic materials. Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial applications. However, traditional synthesis methods mainly obtain low‐yield powder catalysts without macroscopic mechanical strength, and also require tedious procedures, limiting their practicability. Here, monolithic carbon fibers are prepared with single atomic Ni sites directly from bulk metal. The synchronous support growth and metal diffusion realizes the effective atomization of nickel foam, and the innovative strategy of topological growth within a confined space results in robust and tough monolith. The application of this single‐atom‐monolith is demonstrated as a free‐standing electrode for highly efficient electrochemical CO2 reduction. The proposed synthesis strategy allows feasible preparation of functional single‐atom catalysts for potential industrial applications with advantages of using low‐cost raw materials, enabling large‐scale production, and providing processable, moldable monolithic materials. An innovative topological conversion strategy is proposed to synthesize monolithic single‐atom catalysts directly from nickel foam. This single‐atom catalysts exhibits macroscopic structure with high mechanical strength, uniformly distributed single atom sites, and superior electrocatalytic performance as a free‐standing electrode for CO2 reduction. Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial applications. However, traditional synthesis methods mainly obtain low‐yield powder catalysts without macroscopic mechanical strength, and also require tedious procedures, limiting their practicability. Here, monolithic carbon fibers are prepared with single atomic Ni sites directly from bulk metal. The synchronous support growth and metal diffusion realizes the effective atomization of nickel foam, and the innovative strategy of topological growth within a confined space results in robust and tough monolith. The application of this single‐atom‐monolith is demonstrated as a free‐standing electrode for highly efficient electrochemical CO 2 reduction. The proposed synthesis strategy allows feasible preparation of functional single‐atom catalysts for potential industrial applications with advantages of using low‐cost raw materials, enabling large‐scale production, and providing processable, moldable monolithic materials. |
Author | Tang, Tongyu Wang, Hongjuan Wang, Hao‐Fan Yu, Hao Cao, Yonghai Zhang, Hai |
Author_xml | – sequence: 1 givenname: Hai surname: Zhang fullname: Zhang, Hai organization: South China University of Technology – sequence: 2 givenname: Tongyu surname: Tang fullname: Tang, Tongyu organization: South China University of Technology – sequence: 3 givenname: Hao‐Fan surname: Wang fullname: Wang, Hao‐Fan email: whf@scut.edu.cn organization: South China University of Technology – sequence: 4 givenname: Hongjuan surname: Wang fullname: Wang, Hongjuan organization: South China University of Technology – sequence: 5 givenname: Yonghai surname: Cao fullname: Cao, Yonghai organization: South China University of Technology – sequence: 6 givenname: Hao orcidid: 0000-0003-2862-8054 surname: Yu fullname: Yu, Hao email: yuhao@scut.edu.cn organization: South China University of Technology |
BookMark | eNqFkMFKAzEURYNUsK1uXQdcT00mk2ZmWUarQqsLK7gL6SSpqZlJTVKlOz_Bb_RLnFKpIIir9xb33Mc7PdBpXKMAOMVogBFKz4XU9SBFKcFpQYoD0MVDPEwISvPOfsePR6AXwhIhzBjJumAycytn3cJUwsLSNa_KB-Ma6DS8NdWzsnDsRB1gdHDqGmdNfDIVvDfNwqrP949RdDUsRRR2E2I4Boda2KBOvmcfPIwvZ-V1Mrm7uilHk6QimBWJSDGjiDKmGc3FXFGkq4IKjNgcFVLKHGU5llnGcklzSjEZClLMpZJMV1qnkvTB2a535d3LWoXIl27tm_YkJyhDOGcZw20q26Uq70LwSvPKRBHb76IXxnKM-NYb33rje28tNviFrbyphd_8DRQ74M1YtfknzUcX4-kP-wX_U4Nf |
CitedBy_id | crossref_primary_10_20517_cs_2024_84 crossref_primary_10_1002_adfm_202501936 crossref_primary_10_1002_adfm_202404794 crossref_primary_10_1016_j_cej_2024_157080 crossref_primary_10_15541_jim20240302 crossref_primary_10_1039_D4TA02110J crossref_primary_10_1039_D4CC05747C crossref_primary_10_1002_adfm_202407121 |
Cites_doi | 10.1016/j.matt.2020.07.032 10.1039/D0EE02981E 10.1007/s12274-021-4046-z 10.1021/acs.chemrev.0c00576 10.1038/s41560-017-0078-8 10.1021/acs.chemrev.0c00078 10.1002/anie.201912458 10.1002/adma.201801995 10.1016/j.nanoen.2020.104454 10.1002/adma.202003082 10.1080/01614940.2023 10.1038/s41467-019-12510-0 10.1016/j.apcatb.2021.120977 10.1021/jacs.7b09074 10.1002/adma.202211022 10.1002/advs.202102886 10.1021/jacs.0c09060 10.1021/jp503287r 10.1088/0268-1242/29/6/064010 10.1039/D0EE04052E 10.1021/jacsau.1c00121 10.1063/1.1473195 10.1016/j.diamond.2004.01.006 10.1002/anie.202203335 10.1002/adma.202002292 10.1038/s41586-022-05251-6 10.1002/adma.202105812 10.1021/jacs.1c06432 10.1016/j.carbon.2008.05.016 10.1016/j.nanoen.2020.105545 10.1002/smtd.201900540 10.1007/s12274-022-5118-4 10.1021/acs.energyfuels.7b01318 10.1007/s12274-022-4472-6 10.1002/adfm.202206263 10.1038/s41565-021-01022-y 10.1002/adma.202209298 10.1002/anie.202000318 10.1007/s40843-020-1579-7 10.1002/smll.202005148 10.1021/acscatal.9b04217 10.1039/C7EE03245E 10.1016/j.joule.2018.11.008 10.1039/c3cs60076a 10.1016/j.carbon.2015.08.037 10.1002/adma.202001848 10.1021/jacs.1c03135 10.1038/s41563-021-01030-2 10.1038/nchem.1095 10.1038/s41586-019-1904-x |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202312939 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202312939 ADFM202312939 |
Genre | article |
GrantInformation_xml | – fundername: Science and Technology Program of Guangzhou funderid: 2023A04J0674 – fundername: National Natural Science Foundation of China funderid: 22272056; 22078106; 22209049 – fundername: Fundamental Research Funds for the Central Universities funderid: 2022ZYGXZR048 – fundername: Natural Science Foundation of Guangdong Province funderid: 2023A1515012804 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3179-a21750577f758abe50fc95a107b09ddd80481d4478d5855136a39bded7fcff2d3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:36:34 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Tue Jul 01 00:30:54 EDT 2025 Wed Jan 22 17:21:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3179-a21750577f758abe50fc95a107b09ddd80481d4478d5855136a39bded7fcff2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2862-8054 |
PQID | 3040187471 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3040187471 crossref_citationtrail_10_1002_adfm_202312939 crossref_primary_10_1002_adfm_202312939 wiley_primary_10_1002_adfm_202312939_ADFM202312939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2021; 8 2023; 35 2019; 4 2021; 20 2021; 64 2019; 3 2020; 120 2020; 142 2015; 95 2023; 16 2019; 10 2013; 42 2020; 59 2002; 116 2014; 29 2021; 143 2020; 32 2020; 10 2021; 1 2011; 3 2022; 611 2017; 139 2021; 14 2017; 31 2018; 3 2020; 3 2023 2022; 61 2022; 7 2020; 70 2021; 17 2004; 13 2022; 34 2020; 577 2022; 15 2008; 46 2018; 30 2022; 32 2018; 11 2022; 304 2022; 16 2022; 17 2021; 80 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Jose S. (e_1_2_7_24_1) 2022; 7 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 20 start-page: 1385 year: 2021 publication-title: Nat. Mater. – volume: 70 year: 2020 publication-title: Nano Energy – volume: 14 start-page: 765 year: 2021 publication-title: Energy Environ. Sci. – volume: 143 start-page: 7819 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 611 start-page: 284 year: 2022 publication-title: Nature – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 577 start-page: 492 year: 2020 publication-title: Nature – volume: 16 start-page: 2003 year: 2022 publication-title: Nano Res. – volume: 13 start-page: 1210 year: 2004 publication-title: Diam. Relat. Mater. – volume: 17 start-page: 174 year: 2022 publication-title: Nat. Nanotechnol. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 17 year: 2021 publication-title: Small – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 1442 year: 2020 publication-title: Matter‐Us – volume: 304 year: 2022 publication-title: Appl. Catal. B‐Environ. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2022 publication-title: J. Sci‐Adv. Mater. Dev. – volume: 61 year: 2022 publication-title: Angew. Chem. – volume: 42 start-page: 6094 year: 2013 publication-title: Chem. Soc. Rev. – volume: 116 start-page: 8966 year: 2002 publication-title: J. Chem. Phys. – year: 2023 publication-title: Catal. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2019 publication-title: Small Methods – volume: 31 year: 2017 publication-title: Energy Fuel – volume: 29 year: 2014 publication-title: Semicond. Sci. Tech. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 80 year: 2021 publication-title: Nano Energy – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 95 start-page: 616 year: 2015 publication-title: Carbon – volume: 3 start-page: 634 year: 2011 publication-title: Nat. Chem. – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 10 start-page: 2231 year: 2020 publication-title: ACS. Catal. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 1919 year: 2021 publication-title: Sci. China Mater. – volume: 3 start-page: 140 year: 2018 publication-title: Nat. Energy – volume: 14 start-page: 2349 year: 2021 publication-title: Energy Environ. Sci. – volume: 15 start-page: 3913 year: 2022 publication-title: Nano Res. – volume: 11 start-page: 893 year: 2018 publication-title: Energy Environ. Sci. – volume: 10 start-page: 4585 year: 2019 publication-title: Nat. Commun. – volume: 16 start-page: 5880 year: 2023 publication-title: Nano Res. – volume: 59 start-page: 1961 year: 2020 publication-title: Angew. Chem. – volume: 1 start-page: 1086 year: 2021 publication-title: JACS Au – volume: 46 start-page: 1331 year: 2008 publication-title: Carbon – volume: 3 start-page: 584 year: 2019 publication-title: Joule – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_7_9_1 doi: 10.1016/j.matt.2020.07.032 – volume: 7 year: 2022 ident: e_1_2_7_24_1 publication-title: J. Sci‐Adv. Mater. Dev. – ident: e_1_2_7_47_1 doi: 10.1039/D0EE02981E – ident: e_1_2_7_22_1 doi: 10.1007/s12274-021-4046-z – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.0c00576 – ident: e_1_2_7_39_1 doi: 10.1038/s41560-017-0078-8 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.0c00078 – ident: e_1_2_7_40_1 doi: 10.1002/anie.201912458 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201801995 – ident: e_1_2_7_18_1 doi: 10.1016/j.nanoen.2020.104454 – ident: e_1_2_7_8_1 doi: 10.1002/adma.202003082 – ident: e_1_2_7_16_1 doi: 10.1080/01614940.2023 – ident: e_1_2_7_50_1 doi: 10.1038/s41467-019-12510-0 – ident: e_1_2_7_23_1 doi: 10.1016/j.apcatb.2021.120977 – ident: e_1_2_7_45_1 doi: 10.1021/jacs.7b09074 – ident: e_1_2_7_6_1 doi: 10.1002/adma.202211022 – ident: e_1_2_7_49_1 doi: 10.1002/advs.202102886 – ident: e_1_2_7_3_1 doi: 10.1021/jacs.0c09060 – ident: e_1_2_7_43_1 doi: 10.1021/jp503287r – ident: e_1_2_7_34_1 doi: 10.1088/0268-1242/29/6/064010 – ident: e_1_2_7_41_1 doi: 10.1039/D0EE04052E – ident: e_1_2_7_13_1 doi: 10.1021/jacsau.1c00121 – ident: e_1_2_7_36_1 doi: 10.1063/1.1473195 – ident: e_1_2_7_32_1 doi: 10.1016/j.diamond.2004.01.006 – ident: e_1_2_7_37_1 doi: 10.1002/anie.202203335 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202002292 – ident: e_1_2_7_7_1 doi: 10.1038/s41586-022-05251-6 – ident: e_1_2_7_14_1 doi: 10.1002/adma.202105812 – ident: e_1_2_7_5_1 doi: 10.1021/jacs.1c06432 – ident: e_1_2_7_31_1 doi: 10.1016/j.carbon.2008.05.016 – ident: e_1_2_7_17_1 doi: 10.1016/j.nanoen.2020.105545 – ident: e_1_2_7_29_1 doi: 10.1002/smtd.201900540 – ident: e_1_2_7_26_1 doi: 10.1007/s12274-022-5118-4 – ident: e_1_2_7_19_1 doi: 10.1021/acs.energyfuels.7b01318 – ident: e_1_2_7_38_1 doi: 10.1007/s12274-022-4472-6 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.202206263 – ident: e_1_2_7_35_1 doi: 10.1038/s41565-021-01022-y – ident: e_1_2_7_10_1 doi: 10.1002/adma.202209298 – ident: e_1_2_7_51_1 doi: 10.1002/anie.202000318 – ident: e_1_2_7_28_1 doi: 10.1007/s40843-020-1579-7 – ident: e_1_2_7_46_1 doi: 10.1002/smll.202005148 – ident: e_1_2_7_30_1 doi: 10.1021/acscatal.9b04217 – ident: e_1_2_7_44_1 doi: 10.1039/C7EE03245E – ident: e_1_2_7_42_1 doi: 10.1016/j.joule.2018.11.008 – ident: e_1_2_7_12_1 doi: 10.1039/c3cs60076a – ident: e_1_2_7_21_1 doi: 10.1016/j.carbon.2015.08.037 – ident: e_1_2_7_48_1 doi: 10.1002/adma.202001848 – ident: e_1_2_7_11_1 doi: 10.1021/jacs.1c03135 – ident: e_1_2_7_25_1 doi: 10.1038/s41563-021-01030-2 – ident: e_1_2_7_4_1 doi: 10.1038/nchem.1095 – ident: e_1_2_7_33_1 doi: 10.1038/s41586-019-1904-x |
SSID | ssj0017734 |
Score | 2.495164 |
Snippet | Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atomizing Carbon fibers Catalysts Confined spaces electrochemical CO2 reduction Industrial applications Materials science Metal foams monolithic material Monolithic materials Nickel Raw materials single‐atom catalysts Synthesis topological growth Topology |
Title | Topological Conversion of Nickel Foams to Monolithic Single‐Atom Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202312939 https://www.proquest.com/docview/3040187471 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9pu3jmW1lBEPViF3sJkHyitjZh40JM_wd_oL3Enr1ZBBD0EEtgJ2Z2Z3W82s98QcmIKFwJAMjyPKcP2taf74FiGvlTAXe4LyNk-r9zRrX0-cSZLp_gLfoh6ww09I5-v0cEhTrsL0lAQCk-Sa3yiVyw8wYcJW4iKrmv-KOZ5xW9ll2GCF5tUrI09s_tV_OuqtICay4A1X3HCTQLVtxaJJtPOcxZ3-Os3Gsf_dGaLbJRwlPYL-9kmK3K-Q9aXSAp3ycVNUUcBtUkHmKSe77DRRFFtRlM5o2ECDynNEqonCEynu7vndKxlZ_Lj7b2fJQ90gJtEL2mW7pHb8OxmMDLKGgwG18giMECHLBjDeEoHFhBLp6d44IAOGuNeIITwkW9G2LbnCx14OFoHYAWxkMJTXClTWPukMU_m8oBQ5lkAgimTK2GbcQy-lD5IWzBg4DpmkxiVDiJeEpRjnYxZVFArmxGOUlSPUpOc1u0fC2qOH1u2KpVGpYumkaWnLyxI6LEmMXPd_PKWqD8ML-unw78IHZE1fV9m_rRII3t6lsca1GRxm6z2h5cX43ZuwJ-xI_Cf |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIBPUAZg4I0oFPCAxJRS552xaqkKlA5QpG6R44dAlAbRdICJn8Bv5Jfgy6uAhJBgyJDIjhKfz767XL4DODKFywKGMDyPKsP2tab7zLEMfaiAu9wXLKV99t3ujX0-dIpsQvwXJuNDlAE31Ix0vUYFx4D0yYwayoTCX8m1gaK3rGAeFrCsN-Lz21clQYp6XvZh2aWY4kWHBbexYZ587f91X5oZm59N1nTP6axCVDxtlmpyX58mUZ2_fAM5_ut11mAlt0hJM5tC6zAnxxuw_IlTuAm9QVZKAQVKWpinngbZSKyInkn3ckQ6MXuYkCQmeo3AjLrbO06udd-RfH99aybxA2lhnOh5kky24KZzOmh1jbwMg8G1cREYTHst6MZ4SvsWLJJOQ_HAYdpvjBqBEMJH5Iywbc8X2vdwqOUyK4iEFJ7iSpnC2obKOB7LHSDUsxgTVJlcCduMIuZL6TNpC8oocx2zCkYhhJDnjHIslTEKM7qyGeIoheUoVeG4bP-Y0Tl-bFkrZBrmWjoJLb2CYU1Cj1bBTIXzy13CZrtzWZ7t_qXTISx2B5e9sHfWv9iDJX09TwSqQSV5msp9beMk0UE6iz8ALGnzJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gujBt1ifexA8Rbt551hag29EW-gtTPaB0keKTQ968if4G_0l7iZprIIIesghYSdkdx47M5n9BuDQ5C4GqMHwPCoN21ea7qNjGeqSAXOZzzFD-7xxz9r2RcfpTJ3iz_EhyoSb1ozMXmsFH3J58gkailzqk-TKP1E7VjALc7ZbC3TzhuZdCSBFPS__r-xSXeFFOxPYxpp58pX-67b06WtOe6zZlhMuA04-Nq806R6P0_iYvXzDcfzPbFZgqfBHST0XoFWYEYM1WJxCKVyHq1beSEGzkzR0lXqWYiOJJEqOuqJHwgT7I5ImRFkIXU_38MjIvaLtiffXt3qa9ElDZ4meR-loA9rhaatxZhRNGAymXIvAQBWz6CDGkyqywFg4NckCB1XUGNcCzrmvAWe4bXs-V5GHQy0XrSDmgnuSSWlyaxMqg2QgtoBQz0LkVJpMctuMY_SF8FHYnCJF1zGrYEx4ELECoVw3yuhFObayGelVispVqsJROX6YY3P8OHJ3wtKo0NFRZCn7pTsSerQKZsabX94S1ZvhdXm3_ReiA5i_bYbR1fnN5Q4sqMdFFdAuVNKnsdhTDk4a72cy_AFa8PHW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Conversion+of+Nickel+Foams+to+Monolithic+Single%E2%80%90Atom+Catalysts&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Hai&rft.au=Tang%2C+Tongyu&rft.au=Wang%2C+Hao%E2%80%90Fan&rft.au=Wang%2C+Hongjuan&rft.date=2024-04-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.202312939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202312939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |