Topological Conversion of Nickel Foams to Monolithic Single‐Atom Catalysts

Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial appl...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 16
Main Authors Zhang, Hai, Tang, Tongyu, Wang, Hao‐Fan, Wang, Hongjuan, Cao, Yonghai, Yu, Hao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial applications. However, traditional synthesis methods mainly obtain low‐yield powder catalysts without macroscopic mechanical strength, and also require tedious procedures, limiting their practicability. Here, monolithic carbon fibers are prepared with single atomic Ni sites directly from bulk metal. The synchronous support growth and metal diffusion realizes the effective atomization of nickel foam, and the innovative strategy of topological growth within a confined space results in robust and tough monolith. The application of this single‐atom‐monolith is demonstrated as a free‐standing electrode for highly efficient electrochemical CO2 reduction. The proposed synthesis strategy allows feasible preparation of functional single‐atom catalysts for potential industrial applications with advantages of using low‐cost raw materials, enabling large‐scale production, and providing processable, moldable monolithic materials. An innovative topological conversion strategy is proposed to synthesize monolithic single‐atom catalysts directly from nickel foam. This single‐atom catalysts exhibits macroscopic structure with high mechanical strength, uniformly distributed single atom sites, and superior electrocatalytic performance as a free‐standing electrode for CO2 reduction.
AbstractList Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial applications. However, traditional synthesis methods mainly obtain low‐yield powder catalysts without macroscopic mechanical strength, and also require tedious procedures, limiting their practicability. Here, monolithic carbon fibers are prepared with single atomic Ni sites directly from bulk metal. The synchronous support growth and metal diffusion realizes the effective atomization of nickel foam, and the innovative strategy of topological growth within a confined space results in robust and tough monolith. The application of this single‐atom‐monolith is demonstrated as a free‐standing electrode for highly efficient electrochemical CO2 reduction. The proposed synthesis strategy allows feasible preparation of functional single‐atom catalysts for potential industrial applications with advantages of using low‐cost raw materials, enabling large‐scale production, and providing processable, moldable monolithic materials.
Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial applications. However, traditional synthesis methods mainly obtain low‐yield powder catalysts without macroscopic mechanical strength, and also require tedious procedures, limiting their practicability. Here, monolithic carbon fibers are prepared with single atomic Ni sites directly from bulk metal. The synchronous support growth and metal diffusion realizes the effective atomization of nickel foam, and the innovative strategy of topological growth within a confined space results in robust and tough monolith. The application of this single‐atom‐monolith is demonstrated as a free‐standing electrode for highly efficient electrochemical CO2 reduction. The proposed synthesis strategy allows feasible preparation of functional single‐atom catalysts for potential industrial applications with advantages of using low‐cost raw materials, enabling large‐scale production, and providing processable, moldable monolithic materials. An innovative topological conversion strategy is proposed to synthesize monolithic single‐atom catalysts directly from nickel foam. This single‐atom catalysts exhibits macroscopic structure with high mechanical strength, uniformly distributed single atom sites, and superior electrocatalytic performance as a free‐standing electrode for CO2 reduction.
Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a variety of catalytic reactions, making them a highly desirable research subject in materials science with significant potential for industrial applications. However, traditional synthesis methods mainly obtain low‐yield powder catalysts without macroscopic mechanical strength, and also require tedious procedures, limiting their practicability. Here, monolithic carbon fibers are prepared with single atomic Ni sites directly from bulk metal. The synchronous support growth and metal diffusion realizes the effective atomization of nickel foam, and the innovative strategy of topological growth within a confined space results in robust and tough monolith. The application of this single‐atom‐monolith is demonstrated as a free‐standing electrode for highly efficient electrochemical CO 2 reduction. The proposed synthesis strategy allows feasible preparation of functional single‐atom catalysts for potential industrial applications with advantages of using low‐cost raw materials, enabling large‐scale production, and providing processable, moldable monolithic materials.
Author Tang, Tongyu
Wang, Hongjuan
Wang, Hao‐Fan
Yu, Hao
Cao, Yonghai
Zhang, Hai
Author_xml – sequence: 1
  givenname: Hai
  surname: Zhang
  fullname: Zhang, Hai
  organization: South China University of Technology
– sequence: 2
  givenname: Tongyu
  surname: Tang
  fullname: Tang, Tongyu
  organization: South China University of Technology
– sequence: 3
  givenname: Hao‐Fan
  surname: Wang
  fullname: Wang, Hao‐Fan
  email: whf@scut.edu.cn
  organization: South China University of Technology
– sequence: 4
  givenname: Hongjuan
  surname: Wang
  fullname: Wang, Hongjuan
  organization: South China University of Technology
– sequence: 5
  givenname: Yonghai
  surname: Cao
  fullname: Cao, Yonghai
  organization: South China University of Technology
– sequence: 6
  givenname: Hao
  orcidid: 0000-0003-2862-8054
  surname: Yu
  fullname: Yu, Hao
  email: yuhao@scut.edu.cn
  organization: South China University of Technology
BookMark eNqFkMFKAzEURYNUsK1uXQdcT00mk2ZmWUarQqsLK7gL6SSpqZlJTVKlOz_Bb_RLnFKpIIir9xb33Mc7PdBpXKMAOMVogBFKz4XU9SBFKcFpQYoD0MVDPEwISvPOfsePR6AXwhIhzBjJumAycytn3cJUwsLSNa_KB-Ma6DS8NdWzsnDsRB1gdHDqGmdNfDIVvDfNwqrP949RdDUsRRR2E2I4Boda2KBOvmcfPIwvZ-V1Mrm7uilHk6QimBWJSDGjiDKmGc3FXFGkq4IKjNgcFVLKHGU5llnGcklzSjEZClLMpZJMV1qnkvTB2a535d3LWoXIl27tm_YkJyhDOGcZw20q26Uq70LwSvPKRBHb76IXxnKM-NYb33rje28tNviFrbyphd_8DRQ74M1YtfknzUcX4-kP-wX_U4Nf
CitedBy_id crossref_primary_10_20517_cs_2024_84
crossref_primary_10_1002_adfm_202501936
crossref_primary_10_1002_adfm_202404794
crossref_primary_10_1016_j_cej_2024_157080
crossref_primary_10_15541_jim20240302
crossref_primary_10_1039_D4TA02110J
crossref_primary_10_1039_D4CC05747C
crossref_primary_10_1002_adfm_202407121
Cites_doi 10.1016/j.matt.2020.07.032
10.1039/D0EE02981E
10.1007/s12274-021-4046-z
10.1021/acs.chemrev.0c00576
10.1038/s41560-017-0078-8
10.1021/acs.chemrev.0c00078
10.1002/anie.201912458
10.1002/adma.201801995
10.1016/j.nanoen.2020.104454
10.1002/adma.202003082
10.1080/01614940.2023
10.1038/s41467-019-12510-0
10.1016/j.apcatb.2021.120977
10.1021/jacs.7b09074
10.1002/adma.202211022
10.1002/advs.202102886
10.1021/jacs.0c09060
10.1021/jp503287r
10.1088/0268-1242/29/6/064010
10.1039/D0EE04052E
10.1021/jacsau.1c00121
10.1063/1.1473195
10.1016/j.diamond.2004.01.006
10.1002/anie.202203335
10.1002/adma.202002292
10.1038/s41586-022-05251-6
10.1002/adma.202105812
10.1021/jacs.1c06432
10.1016/j.carbon.2008.05.016
10.1016/j.nanoen.2020.105545
10.1002/smtd.201900540
10.1007/s12274-022-5118-4
10.1021/acs.energyfuels.7b01318
10.1007/s12274-022-4472-6
10.1002/adfm.202206263
10.1038/s41565-021-01022-y
10.1002/adma.202209298
10.1002/anie.202000318
10.1007/s40843-020-1579-7
10.1002/smll.202005148
10.1021/acscatal.9b04217
10.1039/C7EE03245E
10.1016/j.joule.2018.11.008
10.1039/c3cs60076a
10.1016/j.carbon.2015.08.037
10.1002/adma.202001848
10.1021/jacs.1c03135
10.1038/s41563-021-01030-2
10.1038/nchem.1095
10.1038/s41586-019-1904-x
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202312939
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202312939
ADFM202312939
Genre article
GrantInformation_xml – fundername: Science and Technology Program of Guangzhou
  funderid: 2023A04J0674
– fundername: National Natural Science Foundation of China
  funderid: 22272056; 22078106; 22209049
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2022ZYGXZR048
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2023A1515012804
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3179-a21750577f758abe50fc95a107b09ddd80481d4478d5855136a39bded7fcff2d3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 04:36:34 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Tue Jul 01 00:30:54 EDT 2025
Wed Jan 22 17:21:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3179-a21750577f758abe50fc95a107b09ddd80481d4478d5855136a39bded7fcff2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2862-8054
PQID 3040187471
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3040187471
crossref_citationtrail_10_1002_adfm_202312939
crossref_primary_10_1002_adfm_202312939
wiley_primary_10_1002_adfm_202312939_ADFM202312939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2021; 8
2023; 35
2019; 4
2021; 20
2021; 64
2019; 3
2020; 120
2020; 142
2015; 95
2023; 16
2019; 10
2013; 42
2020; 59
2002; 116
2014; 29
2021; 143
2020; 32
2020; 10
2021; 1
2011; 3
2022; 611
2017; 139
2021; 14
2017; 31
2018; 3
2020; 3
2023
2022; 61
2022; 7
2020; 70
2021; 17
2004; 13
2022; 34
2020; 577
2022; 15
2008; 46
2018; 30
2022; 32
2018; 11
2022; 304
2022; 16
2022; 17
2021; 80
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Jose S. (e_1_2_7_24_1) 2022; 7
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 20
  start-page: 1385
  year: 2021
  publication-title: Nat. Mater.
– volume: 70
  year: 2020
  publication-title: Nano Energy
– volume: 14
  start-page: 765
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 143
  start-page: 7819
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 611
  start-page: 284
  year: 2022
  publication-title: Nature
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 577
  start-page: 492
  year: 2020
  publication-title: Nature
– volume: 16
  start-page: 2003
  year: 2022
  publication-title: Nano Res.
– volume: 13
  start-page: 1210
  year: 2004
  publication-title: Diam. Relat. Mater.
– volume: 17
  start-page: 174
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 1442
  year: 2020
  publication-title: Matter‐Us
– volume: 304
  year: 2022
  publication-title: Appl. Catal. B‐Environ.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2022
  publication-title: J. Sci‐Adv. Mater. Dev.
– volume: 61
  year: 2022
  publication-title: Angew. Chem.
– volume: 42
  start-page: 6094
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 116
  start-page: 8966
  year: 2002
  publication-title: J. Chem. Phys.
– year: 2023
  publication-title: Catal. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2019
  publication-title: Small Methods
– volume: 31
  year: 2017
  publication-title: Energy Fuel
– volume: 29
  year: 2014
  publication-title: Semicond. Sci. Tech.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 80
  year: 2021
  publication-title: Nano Energy
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 95
  start-page: 616
  year: 2015
  publication-title: Carbon
– volume: 3
  start-page: 634
  year: 2011
  publication-title: Nat. Chem.
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 2231
  year: 2020
  publication-title: ACS. Catal.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 1919
  year: 2021
  publication-title: Sci. China Mater.
– volume: 3
  start-page: 140
  year: 2018
  publication-title: Nat. Energy
– volume: 14
  start-page: 2349
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 3913
  year: 2022
  publication-title: Nano Res.
– volume: 11
  start-page: 893
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 4585
  year: 2019
  publication-title: Nat. Commun.
– volume: 16
  start-page: 5880
  year: 2023
  publication-title: Nano Res.
– volume: 59
  start-page: 1961
  year: 2020
  publication-title: Angew. Chem.
– volume: 1
  start-page: 1086
  year: 2021
  publication-title: JACS Au
– volume: 46
  start-page: 1331
  year: 2008
  publication-title: Carbon
– volume: 3
  start-page: 584
  year: 2019
  publication-title: Joule
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_7_9_1
  doi: 10.1016/j.matt.2020.07.032
– volume: 7
  year: 2022
  ident: e_1_2_7_24_1
  publication-title: J. Sci‐Adv. Mater. Dev.
– ident: e_1_2_7_47_1
  doi: 10.1039/D0EE02981E
– ident: e_1_2_7_22_1
  doi: 10.1007/s12274-021-4046-z
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.0c00576
– ident: e_1_2_7_39_1
  doi: 10.1038/s41560-017-0078-8
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.0c00078
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201912458
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201801995
– ident: e_1_2_7_18_1
  doi: 10.1016/j.nanoen.2020.104454
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.202003082
– ident: e_1_2_7_16_1
  doi: 10.1080/01614940.2023
– ident: e_1_2_7_50_1
  doi: 10.1038/s41467-019-12510-0
– ident: e_1_2_7_23_1
  doi: 10.1016/j.apcatb.2021.120977
– ident: e_1_2_7_45_1
  doi: 10.1021/jacs.7b09074
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.202211022
– ident: e_1_2_7_49_1
  doi: 10.1002/advs.202102886
– ident: e_1_2_7_3_1
  doi: 10.1021/jacs.0c09060
– ident: e_1_2_7_43_1
  doi: 10.1021/jp503287r
– ident: e_1_2_7_34_1
  doi: 10.1088/0268-1242/29/6/064010
– ident: e_1_2_7_41_1
  doi: 10.1039/D0EE04052E
– ident: e_1_2_7_13_1
  doi: 10.1021/jacsau.1c00121
– ident: e_1_2_7_36_1
  doi: 10.1063/1.1473195
– ident: e_1_2_7_32_1
  doi: 10.1016/j.diamond.2004.01.006
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.202203335
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202002292
– ident: e_1_2_7_7_1
  doi: 10.1038/s41586-022-05251-6
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.202105812
– ident: e_1_2_7_5_1
  doi: 10.1021/jacs.1c06432
– ident: e_1_2_7_31_1
  doi: 10.1016/j.carbon.2008.05.016
– ident: e_1_2_7_17_1
  doi: 10.1016/j.nanoen.2020.105545
– ident: e_1_2_7_29_1
  doi: 10.1002/smtd.201900540
– ident: e_1_2_7_26_1
  doi: 10.1007/s12274-022-5118-4
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.energyfuels.7b01318
– ident: e_1_2_7_38_1
  doi: 10.1007/s12274-022-4472-6
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.202206263
– ident: e_1_2_7_35_1
  doi: 10.1038/s41565-021-01022-y
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202209298
– ident: e_1_2_7_51_1
  doi: 10.1002/anie.202000318
– ident: e_1_2_7_28_1
  doi: 10.1007/s40843-020-1579-7
– ident: e_1_2_7_46_1
  doi: 10.1002/smll.202005148
– ident: e_1_2_7_30_1
  doi: 10.1021/acscatal.9b04217
– ident: e_1_2_7_44_1
  doi: 10.1039/C7EE03245E
– ident: e_1_2_7_42_1
  doi: 10.1016/j.joule.2018.11.008
– ident: e_1_2_7_12_1
  doi: 10.1039/c3cs60076a
– ident: e_1_2_7_21_1
  doi: 10.1016/j.carbon.2015.08.037
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.202001848
– ident: e_1_2_7_11_1
  doi: 10.1021/jacs.1c03135
– ident: e_1_2_7_25_1
  doi: 10.1038/s41563-021-01030-2
– ident: e_1_2_7_4_1
  doi: 10.1038/nchem.1095
– ident: e_1_2_7_33_1
  doi: 10.1038/s41586-019-1904-x
SSID ssj0017734
Score 2.495164
Snippet Single‐atom catalysts have emerged as a promising class of catalysts due to their tailored coordination environments on the support, which can improve a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atomizing
Carbon fibers
Catalysts
Confined spaces
electrochemical CO2 reduction
Industrial applications
Materials science
Metal foams
monolithic material
Monolithic materials
Nickel
Raw materials
single‐atom catalysts
Synthesis
topological growth
Topology
Title Topological Conversion of Nickel Foams to Monolithic Single‐Atom Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202312939
https://www.proquest.com/docview/3040187471
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9pu3jmW1lBEPViF3sJkHyitjZh40JM_wd_oL3Enr1ZBBD0EEtgJ2Z2Z3W82s98QcmIKFwJAMjyPKcP2taf74FiGvlTAXe4LyNk-r9zRrX0-cSZLp_gLfoh6ww09I5-v0cEhTrsL0lAQCk-Sa3yiVyw8wYcJW4iKrmv-KOZ5xW9ll2GCF5tUrI09s_tV_OuqtICay4A1X3HCTQLVtxaJJtPOcxZ3-Os3Gsf_dGaLbJRwlPYL-9kmK3K-Q9aXSAp3ycVNUUcBtUkHmKSe77DRRFFtRlM5o2ECDynNEqonCEynu7vndKxlZ_Lj7b2fJQ90gJtEL2mW7pHb8OxmMDLKGgwG18giMECHLBjDeEoHFhBLp6d44IAOGuNeIITwkW9G2LbnCx14OFoHYAWxkMJTXClTWPukMU_m8oBQ5lkAgimTK2GbcQy-lD5IWzBg4DpmkxiVDiJeEpRjnYxZVFArmxGOUlSPUpOc1u0fC2qOH1u2KpVGpYumkaWnLyxI6LEmMXPd_PKWqD8ML-unw78IHZE1fV9m_rRII3t6lsca1GRxm6z2h5cX43ZuwJ-xI_Cf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIBPUAZg4I0oFPCAxJRS552xaqkKlA5QpG6R44dAlAbRdICJn8Bv5Jfgy6uAhJBgyJDIjhKfz767XL4DODKFywKGMDyPKsP2tab7zLEMfaiAu9wXLKV99t3ujX0-dIpsQvwXJuNDlAE31Ix0vUYFx4D0yYwayoTCX8m1gaK3rGAeFrCsN-Lz21clQYp6XvZh2aWY4kWHBbexYZ587f91X5oZm59N1nTP6axCVDxtlmpyX58mUZ2_fAM5_ut11mAlt0hJM5tC6zAnxxuw_IlTuAm9QVZKAQVKWpinngbZSKyInkn3ckQ6MXuYkCQmeo3AjLrbO06udd-RfH99aybxA2lhnOh5kky24KZzOmh1jbwMg8G1cREYTHst6MZ4SvsWLJJOQ_HAYdpvjBqBEMJH5Iywbc8X2vdwqOUyK4iEFJ7iSpnC2obKOB7LHSDUsxgTVJlcCduMIuZL6TNpC8oocx2zCkYhhJDnjHIslTEKM7qyGeIoheUoVeG4bP-Y0Tl-bFkrZBrmWjoJLb2CYU1Cj1bBTIXzy13CZrtzWZ7t_qXTISx2B5e9sHfWv9iDJX09TwSqQSV5msp9beMk0UE6iz8ALGnzJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gujBt1ifexA8Rbt551hag29EW-gtTPaB0keKTQ968if4G_0l7iZprIIIesghYSdkdx47M5n9BuDQ5C4GqMHwPCoN21ea7qNjGeqSAXOZzzFD-7xxz9r2RcfpTJ3iz_EhyoSb1ozMXmsFH3J58gkailzqk-TKP1E7VjALc7ZbC3TzhuZdCSBFPS__r-xSXeFFOxPYxpp58pX-67b06WtOe6zZlhMuA04-Nq806R6P0_iYvXzDcfzPbFZgqfBHST0XoFWYEYM1WJxCKVyHq1beSEGzkzR0lXqWYiOJJEqOuqJHwgT7I5ImRFkIXU_38MjIvaLtiffXt3qa9ElDZ4meR-loA9rhaatxZhRNGAymXIvAQBWz6CDGkyqywFg4NckCB1XUGNcCzrmvAWe4bXs-V5GHQy0XrSDmgnuSSWlyaxMqg2QgtoBQz0LkVJpMctuMY_SF8FHYnCJF1zGrYEx4ELECoVw3yuhFObayGelVispVqsJROX6YY3P8OHJ3wtKo0NFRZCn7pTsSerQKZsabX94S1ZvhdXm3_ReiA5i_bYbR1fnN5Q4sqMdFFdAuVNKnsdhTDk4a72cy_AFa8PHW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Conversion+of+Nickel+Foams+to+Monolithic+Single%E2%80%90Atom+Catalysts&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Hai&rft.au=Tang%2C+Tongyu&rft.au=Wang%2C+Hao%E2%80%90Fan&rft.au=Wang%2C+Hongjuan&rft.date=2024-04-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.202312939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202312939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon