Ionic Thermoelectric Properties of Reconstructed Lamellar Vanadium Pentoxide Membranes
In recent years, the application of ionic thermoelectric (TE) materials to convert low‐grade waste heat into electricity has become a subject of intense scientific research. However, most of the efforts are focused on organic polyelectrolytes or ionic‐liquids embedded in polymeric gels. Here, for th...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 32 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In recent years, the application of ionic thermoelectric (TE) materials to convert low‐grade waste heat into electricity has become a subject of intense scientific research. However, most of the efforts are focused on organic polyelectrolytes or ionic‐liquids embedded in polymeric gels. Here, for the first time, it is demonstrated that nanofluidic membranes of reconstructed layered materials like vanadium pentoxide (V2O5) exhibit excellent ionic‐TE characteristics. The high Seebeck coefficient (S = 14.5 ± 0.5 mV K‐1) of the V2O5 membrane (VO‐M) is attributed to temperature gradient‐induced unidirectional transport of protons through the percolated network of 2D nanofluidic channels. The TE characteristics of VO‐M show nearly 80% improvement (S = 26.3 ± 0.7 mV K‐1) upon functionalizing its percolated network with ionic polymers like poly(4‐styrenesulfonic acid) (PSS). Further, unlike organic polymer‐based TE systems, VO‐M not only sustains exposure to high temperatures (≈200 °C, 5 min) but also protects the PSS molecules intercalated into its interlayer space. Moreover, V2O5‐based TE materials can self‐repair any damage to their physical structure with the help of a tiny water droplet. Thus, nanofluidic membranes of reconstructed layered materials like VO‐Ms demonstrate vast robustness and great ionic‐TE performance, which can provide a novel platform for scientific studies and futuristic applications.
A new class of ionic thermoelectric (TE) materials comprising well‐defined 2D nanofluidic channels is developed by reconstructing exfoliated layers of 2D materials. As an illustrative system, the freestanding membrane of vanadium pentoxide (V2O5) exhibit great Seebeck coefficient with added advantages such as ease of functionalization for further improvements, self‐healing capability, and high thermal, chemical, and mechanical stability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202301178 |