Circumventing Challenges: Design of Anodic Electrocatalysts for Hybrid Water Electrolysis Systems

Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, ex...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 4
Main Authors Wang, Hao‐Yu, Sun, Ming‐Lei, Ren, Jin‐Tao, Yuan, Zhong‐Yong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, explosive hydrogen/oxygen mixtures, reactive oxygen species, and limited pure water. Hybrid water electrolysis, appending different electrolytes in the anode compartment to circumvent the above‐mentioned challenges in conventional water electrolysis, is a particularly attractive alternative. In this review, for the first time, a holistic and subtle description of hybrid water electrolysis is provided, focusing on the design of high‐activity/selectivity/stability anodic electrocatalysts for the electrochemical oxidation of various chemicals, such as alcohol, aldehyde, amine, urea and hydrazine, or the oxygen evolution reaction in seawater electrolytes. Comprehensive judging criteria for anodic oxidation reactions, electrocatalysts, and reaction parameters in hybrid water electrolysis are discussed. Some technoeconomic assessments, feasibility analyses, mechanism explorations, and correlation comparisons are involved. Finally, perspectives on and opportunities for future research directions in hybrid water electrolysis systems are outlined. Hybrid water electrolysis can circumvent the challenges of conventional water electrolysis and show several advantages, including energy efficiency, cost, and safety. Based on the considerations of alternative oxidation reactions, electrocatalysts and reaction parameters for hybrid water electrolysis, several judging criteria are proposed.
AbstractList Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, explosive hydrogen/oxygen mixtures, reactive oxygen species, and limited pure water. Hybrid water electrolysis, appending different electrolytes in the anode compartment to circumvent the above‐mentioned challenges in conventional water electrolysis, is a particularly attractive alternative. In this review, for the first time, a holistic and subtle description of hybrid water electrolysis is provided, focusing on the design of high‐activity/selectivity/stability anodic electrocatalysts for the electrochemical oxidation of various chemicals, such as alcohol, aldehyde, amine, urea and hydrazine, or the oxygen evolution reaction in seawater electrolytes. Comprehensive judging criteria for anodic oxidation reactions, electrocatalysts, and reaction parameters in hybrid water electrolysis are discussed. Some technoeconomic assessments, feasibility analyses, mechanism explorations, and correlation comparisons are involved. Finally, perspectives on and opportunities for future research directions in hybrid water electrolysis systems are outlined.
Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, explosive hydrogen/oxygen mixtures, reactive oxygen species, and limited pure water. Hybrid water electrolysis, appending different electrolytes in the anode compartment to circumvent the above‐mentioned challenges in conventional water electrolysis, is a particularly attractive alternative. In this review, for the first time, a holistic and subtle description of hybrid water electrolysis is provided, focusing on the design of high‐activity/selectivity/stability anodic electrocatalysts for the electrochemical oxidation of various chemicals, such as alcohol, aldehyde, amine, urea and hydrazine, or the oxygen evolution reaction in seawater electrolytes. Comprehensive judging criteria for anodic oxidation reactions, electrocatalysts, and reaction parameters in hybrid water electrolysis are discussed. Some technoeconomic assessments, feasibility analyses, mechanism explorations, and correlation comparisons are involved. Finally, perspectives on and opportunities for future research directions in hybrid water electrolysis systems are outlined. Hybrid water electrolysis can circumvent the challenges of conventional water electrolysis and show several advantages, including energy efficiency, cost, and safety. Based on the considerations of alternative oxidation reactions, electrocatalysts and reaction parameters for hybrid water electrolysis, several judging criteria are proposed.
Author Yuan, Zhong‐Yong
Wang, Hao‐Yu
Sun, Ming‐Lei
Ren, Jin‐Tao
Author_xml – sequence: 1
  givenname: Hao‐Yu
  surname: Wang
  fullname: Wang, Hao‐Yu
  organization: Nankai University
– sequence: 2
  givenname: Ming‐Lei
  surname: Sun
  fullname: Sun, Ming‐Lei
  organization: Nankai University
– sequence: 3
  givenname: Jin‐Tao
  surname: Ren
  fullname: Ren, Jin‐Tao
  organization: Nankai University
– sequence: 4
  givenname: Zhong‐Yong
  orcidid: 0000-0002-3790-8181
  surname: Yuan
  fullname: Yuan, Zhong‐Yong
  email: zyyuan@nankai.edu.cn
  organization: Nankai University
BookMark eNqFkE1LAzEQhoMoWGuvngOeW_Oxu9l6K7VaoepBxeOSJpOask1qkir7791SrSCIc5mBeZ4ZeE_QofMOEDqjZEAJYRcS3GrACGOE50V5gDq0oFm_KDNyuJ85O0a9GJekrWxICecdJMc2qM3qHVyyboHHr7KuwS0gXuIriHbhsDd45Ly2Ck9qUCl4JZOsm5giNj7gaTMPVuMXmSB8E-3WRvzYMrCKp-jIyDpC76t30fP15Gk87c8ebm7Ho1lfcSrKflYaxtlcaKaBCCJorrnRZZ7TghWCtpAycwo81wo0AKGZUCTPFDBuTD7XvIvOd3fXwb9tIKZq6TfBtS8rJgShZSaKoqWyHaWCjzGAqZRNMlnvUpC2riiptnlW2zyrfZ6tNvilrYNdydD8LQx3woetofmHrkaT-7sf9xPECouV
CitedBy_id crossref_primary_10_1039_D4SC03033H
crossref_primary_10_1002_anie_202300390
crossref_primary_10_1016_j_apsusc_2023_157445
crossref_primary_10_1039_D3QM00291H
crossref_primary_10_1002_advs_202300639
crossref_primary_10_1038_s41467_023_43698_x
crossref_primary_10_1039_D3EE02981F
crossref_primary_10_1002_adma_202308647
crossref_primary_10_1016_j_ccr_2024_215901
crossref_primary_10_1002_adfm_202421346
crossref_primary_10_1021_acsnano_4c08058
crossref_primary_10_1007_s40820_023_01080_y
crossref_primary_10_1021_acsmaterialslett_3c01235
crossref_primary_10_1016_j_jcis_2023_09_189
crossref_primary_10_1002_aenm_202402429
crossref_primary_10_1039_D3TA05321K
crossref_primary_10_1002_anie_202401364
crossref_primary_10_1039_D4NR01178C
crossref_primary_10_1002_ange_202412087
crossref_primary_10_1002_ange_202416763
crossref_primary_10_1039_D4TA05436A
crossref_primary_10_1016_j_fuel_2024_132782
crossref_primary_10_1002_aenm_202302515
crossref_primary_10_1007_s10853_024_10433_w
crossref_primary_10_1021_acssuschemeng_3c03909
crossref_primary_10_1002_ange_202300390
crossref_primary_10_1016_j_mseb_2023_116884
crossref_primary_10_1039_D3TA04387H
crossref_primary_10_1016_j_cej_2024_151236
crossref_primary_10_1002_aenm_202400563
crossref_primary_10_1021_acs_inorgchem_3c04285
crossref_primary_10_1002_ange_202401364
crossref_primary_10_1039_D3NR04454H
crossref_primary_10_1002_anie_202318248
crossref_primary_10_1021_acsnano_3c10867
crossref_primary_10_1007_s40820_023_01128_z
crossref_primary_10_3390_inorganics13030084
crossref_primary_10_1002_cctc_202301165
crossref_primary_10_1039_D4CC02729A
crossref_primary_10_1039_D3TA07418H
crossref_primary_10_1002_cben_202300068
crossref_primary_10_1016_j_apcatb_2023_122870
crossref_primary_10_1002_anie_202412087
crossref_primary_10_1002_adma_202408114
crossref_primary_10_1016_j_jcis_2023_11_054
crossref_primary_10_1002_anie_202416763
crossref_primary_10_1002_cctc_202402013
crossref_primary_10_1021_acs_chemrev_3c00723
crossref_primary_10_1039_D4EY00090K
crossref_primary_10_1002_ange_202318248
crossref_primary_10_3390_en16186503
crossref_primary_10_1016_j_ccr_2024_215880
crossref_primary_10_1002_aenm_202402611
crossref_primary_10_1039_D4CS00517A
crossref_primary_10_1002_aenm_202401242
crossref_primary_10_1021_acs_inorgchem_4c04195
crossref_primary_10_1021_acsnano_4c04831
crossref_primary_10_1039_D4TA01953A
crossref_primary_10_1002_advs_202411964
crossref_primary_10_1002_cey2_696
crossref_primary_10_1039_D4TA01071J
crossref_primary_10_1016_j_cej_2024_152028
crossref_primary_10_1002_adfm_202407586
crossref_primary_10_1002_smll_202411269
crossref_primary_10_1021_acsnano_3c03095
crossref_primary_10_1039_D3QI01113E
crossref_primary_10_1016_j_cej_2023_146134
crossref_primary_10_1039_D3QI01686B
crossref_primary_10_1021_acscatal_3c01885
crossref_primary_10_1002_smll_202300194
crossref_primary_10_1002_smll_202309122
crossref_primary_10_1039_D4SC01160K
crossref_primary_10_1039_D3EE02467A
crossref_primary_10_1021_acsami_3c13929
crossref_primary_10_1016_j_ccr_2024_215752
crossref_primary_10_1002_smll_202401343
crossref_primary_10_1016_j_ccr_2023_215410
crossref_primary_10_1002_adma_202404806
crossref_primary_10_1039_D4GC02727B
crossref_primary_10_1039_D3GC03179A
crossref_primary_10_1039_D4QI01740D
crossref_primary_10_1039_D4CC01751J
crossref_primary_10_1016_j_cej_2023_144660
crossref_primary_10_1021_acsanm_5c00443
Cites_doi 10.1016/j.jpowsour.2013.07.028
10.1002/anie.201205314
10.1002/eem2.12409
10.1039/C9GC02880C
10.1016/j.electacta.2020.136954
10.1021/acscatal.6b01838
10.1038/s41560-020-0550-8
10.1038/s41929-019-0279-6
10.1039/C9NR09959J
10.1039/D0TA08709B
10.1016/j.cej.2022.134497
10.1002/anie.200907128
10.1016/j.jechem.2020.01.035
10.1007/s41918-020-00084-1
10.1002/cplu.201600029
10.1039/C8TA05064C
10.1016/j.elecom.2011.05.031
10.1039/D2TA00120A
10.1002/celc.201900675
10.1002/celc.201901592
10.1002/adfm.201908235
10.1016/0360-3199(80)90021-X
10.1016/j.ijhydene.2020.09.058
10.1021/acscatal.7b00876
10.1016/j.cej.2020.128067
10.1016/j.mtnano.2022.100216
10.1039/C8CC01830H
10.1126/science.281.5374.237
10.1016/j.jiec.2022.05.043
10.1002/anie.201608899
10.1016/j.colsurfa.2013.04.019
10.1039/D0TA09473K
10.1039/D1GC00914A
10.1016/j.apcatb.2020.119740
10.1021/ar500426g
10.1021/jacs.6b07127
10.1039/C7CS00529F
10.1021/acsaem.0c00122
10.1016/S0013-4686(98)00075-9
10.1039/C8GC03451F
10.1021/j100783a013
10.1016/j.ijhydene.2018.10.132
10.1016/j.jelechem.2009.05.008
10.1016/j.jechem.2018.07.006
10.1038/nature11475
10.1073/pnas.1900556116
10.1038/s42004-019-0169-5
10.1002/anie.201710877
10.1021/jacs.7b08657
10.1021/acssuschemeng.8b01998
10.1039/C9TA10267A
10.1021/ja0644172
10.1016/j.rser.2017.05.258
10.1016/j.ijhydene.2013.01.151
10.1016/j.jechem.2022.04.045
10.1039/C8TA03741H
10.1016/j.apcatb.2022.121338
10.1039/c3cp44088e
10.1016/j.cej.2020.125217
10.1002/advs.202200146
10.1021/ja412429f
10.1038/s41467-021-25048-x
10.1021/acscatal.7b03142
10.1016/j.jiec.2021.09.028
10.1016/j.jpowsour.2004.09.043
10.1016/j.jpowsour.2014.11.034
10.1021/acscatal.7b03177
10.1038/s41467-021-22250-9
10.1002/adfm.202201127
10.1002/aenm.202200409
10.1021/acs.accounts.5b00068
10.1039/C9TA01903K
10.1039/D1TA05703K
10.1007/s12274-021-3810-4
10.1007/s10800-016-0993-6
10.1016/j.electacta.2011.10.091
10.1016/j.electacta.2021.139714
10.1038/ncomms11850
10.1016/j.jelechem.2013.05.021
10.1021/acscatal.0c01498
10.1016/j.scitotenv.2010.08.057
10.1039/b110908c
10.1016/j.jechem.2022.02.023
10.1039/C9GC03698A
10.1039/C7CC06378D
10.1038/s41467-018-06815-9
10.1016/j.ica.2021.120488
10.1021/acscatal.9b00190
10.1039/C7NJ00326A
10.1021/cs200599g
10.1039/C9CY01085H
10.1039/C6CY00720A
10.1021/jp5052529
10.1039/D0SE00222D
10.1071/SR04028
10.1021/acsaem.0c01008
10.4319/lo.1967.12.1.0176
10.1002/adfm.202004310
10.1002/adfm.201900315
10.1002/adfm.201910309
10.1016/j.jechem.2021.08.042
10.1002/anie.201503917
10.1016/j.gee.2022.05.001
10.1021/acsami.9b22378
10.1016/j.jpowsour.2013.06.068
10.1016/j.jechem.2022.04.004
10.1016/j.chempr.2019.06.014
10.1002/cssc.202002103
10.1002/aenm.201901503
10.1002/cssc.201702075
10.1002/anie.201908722
10.1002/anie.201806298
10.1039/C9TA00878K
10.1002/smll.202103326
10.1039/C8GC02680G
10.1002/anie.201406112
10.1002/cctc.201100023
10.1021/acscatal.8b01017
10.1016/j.elecom.2008.11.031
10.1016/j.apcatb.2022.121389
10.1039/D0NR02196B
10.1002/aenm.201502095
10.1016/j.cej.2020.126192
10.1016/j.apcatb.2019.01.022
10.1021/acsnano.0c00581
10.1002/celc.201600759
10.1016/j.apcatb.2015.03.059
10.1002/cctc.202000392
10.1021/acssuschemeng.8b02698
10.1002/aenm.201801775
10.1016/j.electacta.2019.135211
10.1016/j.jallcom.2022.165234
10.1002/cctc.201601325
10.1016/j.jpowsour.2022.231461
10.1016/j.electacta.2019.03.018
10.1016/j.cattod.2012.05.008
10.1002/aenm.201800338
10.1109/JPROC.2011.2156750
10.1002/anie.201909832
10.1103/PhysRevLett.93.156801
10.1002/adma.201603374
10.1126/science.1103197
10.1016/j.elecom.2017.08.013
10.1016/j.electacta.2019.06.151
10.1002/aenm.201900390
10.1007/s11244-015-0499-1
10.1016/j.jpowsour.2020.227872
10.1002/ejoc.201300315
10.1016/j.electacta.2007.02.041
10.1002/cssc.202000416
10.1002/adfm.201904020
10.1002/cnma.201700076
10.1039/D0TA08078K
10.1007/s10800-008-9771-4
10.1038/s41467-021-27806-3
10.1016/j.jpowsour.2011.06.079
10.1038/s41929-018-0062-0
10.1039/C9CC06646B
10.1126/sciadv.aap7970
10.1039/C9TA03924D
10.1021/acscatal.8b01697
10.1016/j.jcat.2018.03.010
10.1039/C5TA00076A
10.1021/acsaem.1c01932
10.1016/j.cej.2020.124408
10.1039/D0SC00136H
10.1016/j.chemosphere.2020.129206
10.1002/anie.201612635
10.1002/adma.201805127
10.1016/j.cej.2021.133100
10.1016/j.jelechem.2018.10.007
10.1016/j.ijhydene.2018.03.221
10.1002/aenm.201902535
10.1039/D2CC00696K
10.1039/C6QI00384B
10.1002/aenm.201701592
10.1016/j.apcatb.2020.119178
10.1016/j.ijhydene.2020.05.279
10.1002/adfm.201704447
10.1002/anie.202108992
10.1038/s41467-019-13375-z
10.1002/cssc.202000453
10.1039/D1NA00043H
10.1016/j.cej.2020.127308
10.1002/cssc.201501046
10.1039/D2QI00583B
10.1016/j.cej.2022.136987
10.1016/j.susc.2008.08.011
10.1038/ncomms5036
10.1002/adfm.201909610
10.1002/adma.201804763
10.1039/C6MH00016A
10.1021/acscatal.5b01491
10.1038/s41467-018-05878-y
10.1016/j.apcatb.2021.120462
10.1039/D1CC05745F
10.1016/j.cej.2021.128818
10.1016/j.cej.2019.122289
10.1021/acs.analchem.7b05299
10.1016/j.elecom.2009.06.022
10.1002/anie.201710460
10.1016/j.jcat.2019.12.019
10.1021/acsenergylett.6b00214
10.1021/acsaem.0c01040
10.1002/anie.202108563
10.1021/acs.chemrev.8b00705
10.1039/D2QI01699K
10.1021/acsami.1c09503
10.1016/j.jelechem.2020.114740
10.1002/anie.201803543
10.1021/acssuschemeng.9b00203
10.1016/j.apcatb.2022.121132
10.1002/adma.201807898
10.1021/acscatal.6b00709
10.1002/aenm.202101180
10.1038/nchem.2194
10.1016/j.ijhydene.2021.11.235
10.1016/0013-4686(84)85004-5
10.1002/cssc.202101800
10.1021/ja807769r
10.1002/celc.202200092
10.1021/jacs.8b09917
10.1021/ie901012g
10.1039/D0CS00130A
10.2320/matertrans1989.38.899
10.1021/jp209506d
10.1016/j.cej.2019.122603
10.1007/s41918-020-00087-y
10.1002/cssc.201800695
10.1016/j.electacta.2021.138833
10.1002/eem2.12318
10.3390/en13061483
10.1016/j.chempr.2017.12.019
10.1126/science.1257443
10.1021/jp037215q
10.1002/anie.202100610
10.1038/s41929-021-00721-y
10.1021/acscatal.6b01861
10.1038/s41560-021-00899-2
10.1016/j.ijhydene.2019.01.168
10.1002/anie.202107886
10.1021/acs.jpclett.6b02249
10.1002/anie.201807717
10.1039/C8TA06827E
10.1002/adfm.202103673
10.1039/D2GC00989G
10.1038/s41570-016-0003
10.1002/adfm.201706847
10.1007/s41918-020-00086-z
10.1002/adfm.202000556
10.1021/jacs.8b05382
10.1016/j.nanoen.2022.107467
10.1039/B804591G
10.1002/cssc.201702119
10.1039/C7GC01012E
10.1021/acsami.1c18593
10.1038/s41467-018-07882-8
10.1002/adma.202104791
10.1021/acscatal.7b03319
10.1002/slct.201702071
10.1021/acsaem.9b01852
10.1021/acs.chemmater.1c02535
10.1002/smll.201602970
10.1039/b212047j
10.1016/j.cej.2020.125303
10.1002/anie.201908586
10.1002/chem.201203378
10.1021/acssuschemeng.0c07480
10.1039/C8CS00671G
10.1039/C9TA03580J
10.1007/s11244-007-9004-9
10.1002/adfm.202201081
10.1002/anie.202005489
10.1002/celc.201901423
10.1021/acssuschemeng.9b03275
10.1021/acscatal.5b01479
10.1039/c3sc50205h
10.1016/j.cattod.2012.08.013
10.1002/adma.201401969
10.1016/j.cej.2022.135743
10.1039/C8TA06361C
10.1002/cssc.201501581
10.1021/acsami.9b08441
10.1021/ja4071893
10.1002/anie.201712121
10.1007/s11705-021-2102-6
10.1039/D0TA08543J
10.1039/C4GC00401A
10.1016/j.jpowsour.2021.230882
10.1002/anie.201403110
10.1039/D1TA07328A
10.1007/s12274-017-1714-0
10.1021/ja904010u
10.1039/D0TA08475A
10.1021/jacs.2c00242
10.1021/jp8060043
10.1016/j.apcatb.2017.07.005
10.1016/j.ijhydene.2014.12.035
10.1038/ncomms11741
10.1021/acscentsci.5b00227
10.1002/adfm.201910274
10.1002/adma.201605957
10.1021/jacs.2c00465
10.1021/acs.jchemed.7b00361
10.1016/j.ijhydene.2019.10.124
10.1002/anie.201603798
10.1039/C6TA11127K
10.1021/acs.accounts.8b00002
10.1039/C9TA06917H
10.1038/s41467-019-14157-3
10.1002/adfm.201706018
10.1016/j.jcat.2020.02.003
10.1002/ente.201600185
10.1039/D0RA02128H
10.1021/acsaem.0c00383
10.1016/j.apcatb.2021.120071
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202203568
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202203568
AENM202203568
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22179065; 22111530112; 21875118
– fundername: NKU School of Materials Science and Engineering
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3178-48f232b7d2de070715d3fd855162671c31cfb1e35dcedee0147c054ce23ff5bd3
ISSN 1614-6832
IngestDate Fri Jul 25 12:08:52 EDT 2025
Tue Jul 01 01:43:48 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Jan 22 16:24:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3178-48f232b7d2de070715d3fd855162671c31cfb1e35dcedee0147c054ce23ff5bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3790-8181
PQID 2770184766
PQPubID 886389
PageCount 36
ParticipantIDs proquest_journals_2770184766
crossref_citationtrail_10_1002_aenm_202203568
crossref_primary_10_1002_aenm_202203568
wiley_primary_10_1002_aenm_202203568_AENM202203568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 83
2013; 4
2016 2004; 4 42
2012 2004; 51 108
2016 2019 2019 2013; 6 319 44 242
2019; 11
2022; 24
2014; 26
2019 2018 2018 2019 2019 2020 2019; 9 361 11 7 48 14 55
2014 2015 2015; 53 5 48
2017 2011; 5 196
2018 2018; 28 57
2020; 13
2020; 12
2021; 284
2020; 11
2018 2018; 8 28
2020; 10
2019 2020 2019 2018 2020 2020; 7 59 58 57 11 8
2018 2015 2017 2015; 8 1 8 8
2018 2020 2020; 6 381 402
2016 2019 2019; 6 31 245
2013; 6
2014; 136
2018; 47
2009; 633
2018; 6
2009; 11
2018; 8
2022 2020; 34 360
2013; 2013
2018; 1
2019; 21
2014; 16
2021; 390
2020; 453
2022; 32
2020 2022; 13 9
2009 2008 2013 2015; 11 112 19 176‐177
2018 2010 2022; 829 3 10
2010 2019 1967; 408 10 12
2022; 446
2015 2019 2012; 40 44 5
2014; 245
2019; 7
2017 2019 2021 2022; 56 9 414 9
2019; 9
2015; 58
2014 2018 2016 2013; 345 4 7 135
2019; 31
2019; 2
2018 2017; 4 29
2015; 54
2011; 4
2019 2018; 7 57
2011; 3
2022; 912
2017 2021 2019; 53 60 58
2022; 113
2020 1997; 10 38
32
2022; 100
2012; 195
2021; 417
2016; 6
2010; 49
2016; 1
2021 2021; 11 4
2020 2018; 7 9
2020; 30
2020; 396
2022; 5
2019 2016; 7 81
2022; 9
2022; 13
2009 2020; 131 45
2018 2020 2021; 8 5 9
2022; 15
2020; 277
2020 2019; 13 7
2021; 60
2018; 11
2012; 116
2020 2020 2019; 382 379 10
2022; 105
2016; 9
2022; 18
2017; 7
2018 2020 2017; 11 22 19
2021; 408
2017; 1
2017; 3
2022; 70
2018 2018; 11 11
2022; 72
2022 2021 2021 2021; 12 4 4 4
2021; 525
2020 1964 2002; 384 68 121
2018; 81
2013; 202
2011; 13
2012 2018 2015 2019; 2 43 275 305
1984; 29
2012 2021; 100 14
2022; 66
2022; 535
1998; 43
2017; 9
2015 2016 2017 2016; 7 138 139 55
2017 2019 2015 2019; 29 58 3 9
2020; 8
2020 1998; 4 281
2020; 7
2017 2017 2017; 41 4 4
2013; 15
2014; 5
2021; 31
2020; 3
2021; 33
2005; 142
2020 2021 2012; 389 15 488
2013; 431
2020; 49
2019; 116
2020; 47
2018 2016; 90 3
2018 2014; 95 7
2022; 403
2006; 128
2022; 520
2014; 53
2018 2018 2019; 51 54 6
2017; 218
2014; 118
2021; 9
2022; 430
2022; 310
2021; 6
2019 2016 2020; 2 7 30
2021; 3
2018; 140
2007 2019 2019; 52 12 119
2022; 51
2020 2019 2018; 330 7 28
2008; 602
2022; 47
2019 2018; 29 8
2009; 131
2022; 439
2015; 8
2020 2013 2012; 12 703 59
2018 2018 2018 2018; 9 6 57 6
2022; 312
2022; 433
2022; 144
2021; 14
2021; 13
2019 2009 2020 2021; 141 48 396 23
2021; 12
2013; 38
2004; 93
2022
2020 2016 2009 2021 2019; 45 46 39 267 5
2017; 10
2017; 13
2017 2018; 56 11
2017 2018 2018; 2 43 8
2021; 291
1980; 5
2022; 58
2015 2003; 48 5
2020; 876
2004 2020 2019; 305 13 32
2009; 140
2019 2019; 31 29
2021; 297
2022; 306
2018 2021 2016; 8 9 6
2012; 5
2007; 46
2015 2018; 5 20
2018; 57
e_1_2_7_3_2
e_1_2_7_3_1
Nilges P. (e_1_2_7_120_1) 2013; 6
Du X. (e_1_2_7_158_1) 2022; 51
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_2
e_1_2_7_19_1
Hu E. (e_1_2_7_21_2) 2018; 11
e_1_2_7_60_1
e_1_2_7_191_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_165_3
e_1_2_7_165_2
e_1_2_7_116_3
e_1_2_7_116_2
e_1_2_7_116_1
e_1_2_7_94_1
Huang H. (e_1_2_7_72_1) 2020; 13
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_2
e_1_2_7_56_1
e_1_2_7_56_3
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_214_2
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_139_1
e_1_2_7_105_4
e_1_2_7_4_1
e_1_2_7_105_2
e_1_2_7_105_3
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_12_3
e_1_2_7_192_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_181_4
e_1_2_7_67_1
Yu Z.‐Y. (e_1_2_7_140_1) 2018; 11
e_1_2_7_181_2
e_1_2_7_181_3
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_166_2
e_1_2_7_203_1
e_1_2_7_166_1
Dresp S. (e_1_2_7_220_1) 2020; 13
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_2
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_170_3
e_1_2_7_170_2
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_170_4
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_1_3
e_1_2_7_106_2
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_2
e_1_2_7_13_3
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_43_2
e_1_2_7_89_1
e_1_2_7_182_1
Zhang L. (e_1_2_7_84_2) 2019; 12
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_167_3
e_1_2_7_167_2
Faber M. S. (e_1_2_7_39_2) 2014; 7
e_1_2_7_118_2
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
Li K. (e_1_2_7_111_3) 2018; 11
e_1_2_7_54_1
e_1_2_7_171_2
e_1_2_7_171_1
e_1_2_7_216_1
Stern L.‐A. (e_1_2_7_115_4) 2015; 8
e_1_2_7_171_3
e_1_2_7_194_1
Eerhart A. J. J. E. (e_1_2_7_48_1) 2012; 5
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_133_3
e_1_2_7_179_1
e_1_2_7_107_2
e_1_2_7_107_3
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_4
e_1_2_7_122_3
e_1_2_7_122_2
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_42_2
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_168_2
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_111_7
e_1_2_7_91_1
e_1_2_7_111_6
e_1_2_7_111_5
e_1_2_7_111_4
e_1_2_7_111_2
e_1_2_7_91_4
e_1_2_7_111_1
e_1_2_7_91_3
e_1_2_7_91_2
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_99_4
e_1_2_7_99_3
e_1_2_7_99_2
e_1_2_7_38_1
e_1_2_7_38_2
e_1_2_7_38_3
Lan R. (e_1_2_7_133_2) 2010; 3
e_1_2_7_134_1
e_1_2_7_134_2
e_1_2_7_157_1
e_1_2_7_108_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_100_2
e_1_2_7_15_3
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_146_1
Rossmeisl J. (e_1_2_7_83_1) 2012; 5
e_1_2_7_90_2
e_1_2_7_90_1
Yu L. (e_1_2_7_209_1) 2020; 13
e_1_2_7_112_1
e_1_2_7_90_3
e_1_2_7_52_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
Rees N. V. (e_1_2_7_169_1) 2011; 4
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_135_1
e_1_2_7_135_2
e_1_2_7_135_3
e_1_2_7_135_4
e_1_2_7_210_1
e_1_2_7_135_5
e_1_2_7_109_1
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_101_2
e_1_2_7_101_3
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_162_2
e_1_2_7_207_1
e_1_2_7_162_1
e_1_2_7_207_2
e_1_2_7_162_3
Hong W. (e_1_2_7_98_1) 2015; 8
e_1_2_7_147_1
e_1_2_7_8_4
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_136_1
e_1_2_7_136_2
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_5_4
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_5_3
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_6
e_1_2_7_114_5
e_1_2_7_114_4
e_1_2_7_114_3
e_1_2_7_114_2
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_50_1
e_1_2_7_96_4
e_1_2_7_50_3
e_1_2_7_96_3
Christopher K. (e_1_2_7_3_3) 2012; 5
e_1_2_7_96_2
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_35_3
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_35_4
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_198_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_126_3
e_1_2_7_126_2
e_1_2_7_126_1
e_1_2_7_6_2
e_1_2_7_103_1
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_2
e_1_2_7_10_3
e_1_2_7_84_3
e_1_2_7_190_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_3
e_1_2_7_115_2
e_1_2_7_115_1
e_1_2_7_95_1
Spurgeon J. M. (e_1_2_7_82_2) 2018; 11
e_1_2_7_95_3
e_1_2_7_22_2
e_1_2_7_95_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
Kumari S. (e_1_2_7_218_1) 2016; 9
e_1_2_7_138_1
References_xml – volume: 9
  start-page: 1725
  year: 2016
  publication-title: Environ Sci
– volume: 1
  start-page: 0003
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– year: 2022
  publication-title: Energy Environ. Mater.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 100 14
  start-page: 410 130
  year: 2012 2021
  publication-title: Proc. IEEE ChemSusChem
– volume: 140
  start-page: 363
  year: 2009
  publication-title: Faraday Discuss.
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 6510
  year: 2014
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4159
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 3303
  year: 1998
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 386
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 312
  year: 2022
  publication-title: Appl. Catal., B
– volume: 2 43 8
  start-page: 9316 1
  year: 2017 2018 2018
  publication-title: ChemistrySelect Int. J. Hydrogen Energy ACS Catal.
– volume: 6
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 15
  start-page: 6475
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 1004
  year: 2018
  publication-title: Nano Res.
– volume: 9
  start-page: 403
  year: 2016
  publication-title: ChemSusChem
– volume: 9
  year: 2022
  publication-title: ChemElectroChem
– volume: 6
  start-page: 9596
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 3778
  year: 2014
  publication-title: Green Chem.
– volume: 876
  year: 2020
  publication-title: J. Electroanal. Chem.
– volume: 47
  start-page: 5766
  year: 2022
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29 58 3 9
  start-page: 7145 5104
  year: 2017 2019 2015 2019
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. J. Mater. Chem. A ACS Catal.
– volume: 520
  year: 2022
  publication-title: J. Power Sources
– volume: 51 54 6
  start-page: 1571 5943 3214
  year: 2018 2018 2019
  publication-title: Acc. Chem. Res. Chem. Commun. ChemElectroChem
– volume: 13 9
  start-page: 3439
  year: 2020 2022
  publication-title: Environ. Sci. Adv. Sci.
– volume: 54
  start-page: 9394
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 332
  year: 2018
  publication-title: Nat. Catal.
– volume: 912
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 53 60 58
  year: 2017 2021 2019
  publication-title: Chem. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 58
  start-page: 6132
  year: 2022
  publication-title: Chem. Commun.
– volume: 3
  start-page: 2280
  year: 2021
  publication-title: Nanoscale Adv.
– volume: 70
  start-page: 258
  year: 2022
  publication-title: J. Energy Chem.
– volume: 284
  year: 2021
  publication-title: Appl. Catal., B
– volume: 13
  start-page: 1483
  year: 2020
  publication-title: Energies
– volume: 403
  year: 2022
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 3585
  year: 2020
  publication-title: ChemCatChem
– volume: 142
  start-page: 18
  year: 2005
  publication-title: J. Power Sources
– volume: 11 4
  start-page: 8685
  year: 2021 2021
  publication-title: Adv. Energy Mater. ACS Appl. Energy Mater.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 4 281
  start-page: 2967 237
  year: 2020 1998
  publication-title: Sustainable Energy Fuels Science
– volume: 9
  start-page: 5664
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 1700
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 10
  start-page: 4851
  year: 2017
  publication-title: ChemSusChem
– volume: 2
  start-page: 67
  year: 2019
  publication-title: Commun. Chem.
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 3764
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 4990
  year: 2020
  publication-title: Environ. Sci.
– volume: 310
  year: 2022
  publication-title: Appl. Catal., B
– volume: 6 381 402
  year: 2018 2020 2020
  publication-title: J. Mater. Chem. A Chem. Eng. J. Chem. Eng. J.
– volume: 3
  start-page: 7560
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 525
  year: 2021
  publication-title: Inorg. Chim. Acta
– volume: 4 42
  start-page: 1329 709
  year: 2016 2004
  publication-title: Energy Technol. Soil Res.
– volume: 6
  start-page: 904
  year: 2021
  publication-title: Nat. Energy
– volume: 7 57
  start-page: 7777 172
  year: 2019 2018
  publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed.
– volume: 11 11
  start-page: 821 1536
  year: 2018 2018
  publication-title: ChemSusChem Environ. Sci.
– volume: 105
  start-page: 58
  year: 2022
  publication-title: J. Ind. Eng. Chem.
– volume: 2
  start-page: 8359
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  start-page: 4036
  year: 2014
  publication-title: Nat. Commun.
– volume: 21
  start-page: 6699
  year: 2019
  publication-title: Green Chem.
– volume: 13 7
  start-page: 3127
  year: 2020 2019
  publication-title: ChemSusChem ACS Sustainable Chem. Eng.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8 1 8 8
  start-page: 5533 244 144 2347
  year: 2018 2015 2017 2015
  publication-title: ACS Catal. ACS Cent. Sci. J. Phys. Chem. Lett. Environ. Sci.
– volume: 2013
  start-page: 5225
  year: 2013
  publication-title: Eur. J. Org. Chem.
– volume: 72
  start-page: 361
  year: 2022
  publication-title: J. Energy Chem.
– volume: 291
  year: 2021
  publication-title: Appl. Catal., B
– volume: 202
  start-page: 197
  year: 2013
  publication-title: Catal. Today
– volume: 297
  year: 2021
  publication-title: Appl. Catal., B
– volume: 12
  start-page: 2008
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  start-page: 4564
  year: 2017
  publication-title: ACS Catal.
– volume: 21
  start-page: 578
  year: 2019
  publication-title: Green Chem.
– volume: 5 196
  start-page: 3208 9579
  year: 2017 2011
  publication-title: J. Mater. Chem. A J. Power Sources
– volume: 95 7
  start-page: 197 3519
  year: 2018 2014
  publication-title: J. Chem. Educ. Environ. Sci.
– volume: 4
  start-page: 2710
  year: 2013
  publication-title: Chem. Sci.
– volume: 10 38
  start-page: 899
  year: 2020 1997
  publication-title: RSC Adv. Mater. Trans.
– volume: 330 7 28
  year: 2020 2019 2018
  publication-title: Electrochim. Acta ACS Sustainable Chem. Eng. Adv. Funct. Mater.
– volume: 5
  start-page: 401
  year: 1980
  publication-title: Int. J. Hydrogen Energy
– volume: 2 43 275 305
  start-page: 759 341 47
  year: 2012 2018 2015 2019
  publication-title: ACS Catal. Int. J. Hydrogen Energy J. Power Sources Electrochim. Acta
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 128
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 5 20
  start-page: 6529 5427
  year: 2015 2018
  publication-title: ACS Catal. Green Chem.
– volume: 13
  start-page: 890
  year: 2011
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 1255
  year: 2011
  publication-title: Environ Sci
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 100
  year: 2022
  publication-title: Nano Energy
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 116
  start-page: 6624
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 147
  year: 2022
  publication-title: Nat. Commun.
– volume: 602
  start-page: 3424
  year: 2008
  publication-title: Surf. Sci.
– volume: 439
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 144
  start-page: 9254
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 32
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 3978
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 8 28
  year: 2018 2018
  publication-title: Adv. Energy Mater. Adv. Funct. Mater.
– volume: 12
  start-page: 4679
  year: 2021
  publication-title: Nat. Commun.
– volume: 144
  start-page: 7720
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 72
  start-page: 88
  year: 2022
  publication-title: J. Energy Chem.
– volume: 51
  start-page: 4909
  year: 2022
  publication-title: John Dalton Prog. Sci., Pap. Conf. Hist. Sci.
– volume: 141 48 396 23
  start-page: 890 4228
  year: 2019 2009 2020 2021
  publication-title: J. Am. Chem. Soc. Ind. Eng. Chem. Res. Chem. Eng. J. Green Chem.
– volume: 7
  start-page: 86
  year: 2020
  publication-title: ChemElectroChem
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 7 9
  start-page: 163 3376
  year: 2020 2018
  publication-title: ChemElectroChem Nat. Commun.
– volume: 29 8
  year: 2019 2018
  publication-title: Adv. Funct. Mater. Adv. Energy Mater.
– volume: 9
  start-page: 962
  year: 2016
  publication-title: ChemSusChem
– volume: 408 10 12
  start-page: 5958 1 176
  year: 2010 2019 1967
  publication-title: Sci. Total Environ. Nat. Commun. Limnol. Oceanogr.
– volume: 8
  start-page: 2910
  year: 2015
  publication-title: Environ. Sci.
– volume: 8 9 6
  start-page: 7179 1970 6704
  year: 2018 2021 2016
  publication-title: ACS Catal. ACS Sustainable Chem. Eng. ACS Catal.
– volume: 9
  start-page: 1683
  year: 2017
  publication-title: ChemCatChem
– volume: 11 22 19
  start-page: 2547 843 3023
  year: 2018 2020 2017
  publication-title: ChemSusChem Green Chem. Green Chem.
– volume: 131 45
  start-page: 2615
  year: 2009 2020
  publication-title: J. Am. Chem. Soc. Int. J. Hydrogen Energy
– volume: 4 29
  year: 2018 2017
  publication-title: Sci. Adv. Adv. Mater.
– volume: 12
  start-page: 4426
  year: 2020
  publication-title: Nanoscale
– volume: 10
  start-page: 6741
  year: 2020
  publication-title: ACS Catal.
– volume: 66
  start-page: 483
  year: 2022
  publication-title: J. Energy Chem.
– volume: 12 4 4 4
  start-page: 136 473 194
  year: 2022 2021 2021 2021
  publication-title: Adv. Energy Mater. Electrochem. Eng. Energy Electrochem. Eng. Energy Electrochem. Eng. Energy
– volume: 408
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 1864
  year: 2018
  publication-title: ACS Catal.
– volume: 5
  start-page: 8335
  year: 2012
  publication-title: Environ. Sci.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 535
  year: 2022
  publication-title: J. Power Sources
– volume: 29
  start-page: 1503
  year: 1984
  publication-title: Electrochim. Acta
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6 31 245
  start-page: 4491 555
  year: 2016 2019 2019
  publication-title: ACS Catal. Adv. Mater. Appl. Catal., B
– volume: 5
  start-page: 66
  year: 2022
  publication-title: Nat. Catal.
– volume: 83
  start-page: 11
  year: 2017
  publication-title: Electrochem. Commun.
– volume: 382 379 10
  start-page: 237 5335
  year: 2020 2020 2019
  publication-title: J. Catal. Chem. Eng. J. Nat. Commun.
– volume: 45 46 39 267 5
  start-page: 1011 1137 2228
  year: 2020 2016 2009 2021 2019
  publication-title: Int. J. Hydrogen Energy J. Appl. Elctrochem. J. Appl. Elctrochem. Chemosphere Chem
– volume: 8
  start-page: 526
  year: 2018
  publication-title: ACS Catal.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12 703 59
  start-page: 56 284
  year: 2020 2013 2012
  publication-title: ACS Appl. Mater. Interfaces J. Electroanal. Chem. Electrochim. Acta
– volume: 6
  start-page: 7621
  year: 2016
  publication-title: ACS Catal.
– volume: 113
  start-page: 170
  year: 2022
  publication-title: J. Ind. Eng. Chem.
– volume: 345 4 7 135
  start-page: 1326 637
  year: 2014 2018 2016 2013
  publication-title: Science Chem Nat. Commun. J. Am. Chem. Soc.
– volume: 6
  start-page: 2925
  year: 2013
  publication-title: Environ. Sci.
– year: 2022
  publication-title: Green Energy Environ.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 7 138 139 55
  start-page: 328 9913
  year: 2015 2016 2017 2016
  publication-title: Nat. Chem. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 11 112 19 176‐177
  start-page: 390 2242 233
  year: 2009 2008 2013 2015
  publication-title: Electrochem. Commun. J. Phys. Chem. C Chemistry Appl. Catal., B
– volume: 18
  year: 2022
  publication-title: Mater. Today Nano
– volume: 51 108
  start-page: 2654
  year: 2012 2004
  publication-title: Angew. Chem., Int. Ed. J. Phys. Chem. B
– volume: 40 44 5
  start-page: 6371 6640
  year: 2015 2019 2012
  publication-title: Int. J. Hydrogen Energy Int. J. Hydrogen Energy Environ. Sci.
– volume: 3
  start-page: 7619
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 277
  year: 2020
  publication-title: Appl. Catal., B.
– volume: 9
  start-page: 3643
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 81
  start-page: 1690
  year: 2018
  publication-title: Renewable Sustainable Energy Rev.
– volume: 52 12 119
  start-page: 5512 492 7610
  year: 2007 2019 2019
  publication-title: Electrochim. Acta Environ. Sci. Chem. Rev.
– volume: 11
  start-page: 1890
  year: 2018
  publication-title: Environ. Sci.
– volume: 431
  start-page: 60
  year: 2013
  publication-title: Colloids Surf., A
– volume: 633
  start-page: 159
  year: 2009
  publication-title: J. Electroanal. Chem.
– volume: 453
  year: 2020
  publication-title: J. Power Sources
– volume: 9 6 57 6
  start-page: 4365 7649
  year: 2018 2018 2018 2018
  publication-title: Nat. Commun. J. Mater. Chem. A Angew. Chem., Int. Ed. J. Mater. Chem. A
– volume: 31 29
  year: 2019 2019
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 389 15 488
  start-page: 1408 294
  year: 2020 2021 2012
  publication-title: Chem. Eng. J. Front. Chem. Sci. Eng. Nature
– volume: 13
  start-page: 1725
  year: 2020
  publication-title: Environ Sci
– volume: 7 81
  start-page: 8117 1045
  year: 2019 2016
  publication-title: J. Mater. Chem. A ChemPlusChem
– volume: 58
  start-page: 1311
  year: 2015
  publication-title: Top. Catal.
– volume: 8 5 9
  start-page: 367 74
  year: 2018 2020 2021
  publication-title: Adv. Energy Mater. Nat. Energy J. Mater. Chem. A
– volume: 57
  start-page: 1616
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 6 319 44 242
  start-page: 6870 312 872
  year: 2016 2019 2019 2013
  publication-title: Catal. Sci. Technol. Electrochim. Acta Int. J. Hydrogen Energy J. Power Sources
– volume: 53 5 48
  start-page: 8824 5851 1474
  year: 2014 2015 2015
  publication-title: Angew. Chem., Int. Ed. ACS Catal. Acc. Chem. Res.
– volume: 56 11
  start-page: 3897 872
  year: 2017 2018
  publication-title: Angew. Chem., Int. Ed. Environ. Sci.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 218
  start-page: 470
  year: 2017
  publication-title: Appl. Catal., B
– volume: 49
  start-page: 4813
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 24
  start-page: 4870
  year: 2022
  publication-title: Green Chem.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 48 5
  start-page: 1403 1329
  year: 2015 2003
  publication-title: Acc. Chem. Res. Phys. Chem. Chem. Phys.
– volume: 38
  start-page: 4901
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 14
  start-page: 5499
  year: 2021
  publication-title: ChemSusChem
– volume: 306
  year: 2022
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 1176
  year: 2011
  publication-title: ChemCatChem
– volume: 90 3
  start-page: 4702 169
  year: 2018 2016
  publication-title: Anal. Chem. Mater. Horiz.
– volume: 28 57
  start-page: 698
  year: 2018 2018
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 34 360
  start-page: 959
  year: 2022 2020
  publication-title: Chem. Mater. Electrochim. Acta
– volume: 417
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 491
  year: 2017
  publication-title: ChemNanoMat
– volume: 7 59 58 57 11 8
  start-page: 1798 1138
  year: 2019 2020 2019 2018 2020 2020
  publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chem. Sci. J. Mater. Chem. A
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 41 4 4
  start-page: 4754 420 481
  year: 2017 2017 2017
  publication-title: New J. Chem. Inorg. Chem. Front. ChemElectroChem
– volume: 47
  start-page: 234
  year: 2020
  publication-title: J. Energy Chem.
– volume: 384 68 121
  start-page: 1 70 301
  year: 2020 1964 2002
  publication-title: J. Catal. J. Phys. Chem. Faraday Discuss.
– volume: 5
  start-page: 6407
  year: 2012
  publication-title: Environ Sci
– volume: 11
  start-page: 265
  year: 2020
  publication-title: Nat. Commun.
– volume: 2 7 30
  start-page: 495
  year: 2019 2016 2020
  publication-title: Nat. Catal. Nat. Commun. Adv. Funct. Mater.
– volume: 46
  start-page: 306
  year: 2007
  publication-title: Top. Catal.
– volume: 829 3 10
  start-page: 81 438 9308
  year: 2018 2010 2022
  publication-title: J. Electroanal. Chem. Environ. Sci. J. Mater. Chem. A
– volume: 47
  start-page: 172
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 1104
  year: 2022
  publication-title: Chem. Commun.
– volume: 305 13 32
  start-page: 972 3357 78
  year: 2004 2020 2019
  publication-title: Science ChemSusChem J. Energy Chem.
– volume: 9 361 11 7 48 14 55
  start-page: 4678 238 1232 3181 6812
  year: 2019 2018 2018 2019 2019 2020 2019
  publication-title: Catal. Sci. Technol. J. Catal. Environ. Sci. J. Mater. Chem. A Chem. Soc. Rev. ACS Nano Chem. Commun.
– volume: 390
  year: 2021
  publication-title: Electrochim. Acta
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 2996
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 136
  start-page: 3937
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 56 9 414 9
  start-page: 842 6182
  year: 2017 2019 2021 2022
  publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater. Chem. Eng. J. Inorg. Chem. Front.
– volume: 15
  start-page: 1916
  year: 2022
  publication-title: Nano Res.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 195
  start-page: 144
  year: 2012
  publication-title: Catal. Today
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 245
  start-page: 927
  year: 2014
  publication-title: J. Power Sources
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jpowsour.2013.07.028
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.201205314
– ident: e_1_2_7_63_1
  doi: 10.1002/eem2.12409
– ident: e_1_2_7_110_1
  doi: 10.1039/C9GC02880C
– ident: e_1_2_7_42_2
  doi: 10.1016/j.electacta.2020.136954
– ident: e_1_2_7_119_1
  doi: 10.1021/acscatal.6b01838
– ident: e_1_2_7_13_2
  doi: 10.1038/s41560-020-0550-8
– ident: e_1_2_7_90_1
  doi: 10.1038/s41929-019-0279-6
– ident: e_1_2_7_176_1
  doi: 10.1039/C9NR09959J
– ident: e_1_2_7_13_3
  doi: 10.1039/D0TA08709B
– ident: e_1_2_7_144_1
  doi: 10.1016/j.cej.2022.134497
– ident: e_1_2_7_213_1
  doi: 10.1002/anie.200907128
– ident: e_1_2_7_127_1
  doi: 10.1016/j.jechem.2020.01.035
– ident: e_1_2_7_5_2
  doi: 10.1007/s41918-020-00084-1
– ident: e_1_2_7_7_2
  doi: 10.1002/cplu.201600029
– ident: e_1_2_7_165_1
  doi: 10.1039/C8TA05064C
– ident: e_1_2_7_97_1
  doi: 10.1016/j.elecom.2011.05.031
– ident: e_1_2_7_133_3
  doi: 10.1039/D2TA00120A
– ident: e_1_2_7_12_3
  doi: 10.1002/celc.201900675
– ident: e_1_2_7_123_1
  doi: 10.1002/celc.201901592
– ident: e_1_2_7_94_1
  doi: 10.1002/adfm.201908235
– ident: e_1_2_7_208_1
  doi: 10.1016/0360-3199(80)90021-X
– ident: e_1_2_7_214_2
  doi: 10.1016/j.ijhydene.2020.09.058
– ident: e_1_2_7_70_1
  doi: 10.1021/acscatal.7b00876
– ident: e_1_2_7_160_1
  doi: 10.1016/j.cej.2020.128067
– ident: e_1_2_7_197_1
  doi: 10.1016/j.mtnano.2022.100216
– ident: e_1_2_7_12_2
  doi: 10.1039/C8CC01830H
– ident: e_1_2_7_18_2
  doi: 10.1126/science.281.5374.237
– volume: 13
  start-page: 3439
  year: 2020
  ident: e_1_2_7_209_1
  publication-title: Environ. Sci.
– ident: e_1_2_7_153_1
  doi: 10.1016/j.jiec.2022.05.043
– ident: e_1_2_7_170_1
  doi: 10.1002/anie.201608899
– ident: e_1_2_7_183_1
  doi: 10.1016/j.colsurfa.2013.04.019
– ident: e_1_2_7_156_1
  doi: 10.1039/D0TA09473K
– ident: e_1_2_7_105_4
  doi: 10.1039/D1GC00914A
– ident: e_1_2_7_152_1
  doi: 10.1016/j.apcatb.2020.119740
– ident: e_1_2_7_100_1
  doi: 10.1021/ar500426g
– ident: e_1_2_7_35_2
  doi: 10.1021/jacs.6b07127
– ident: e_1_2_7_113_1
  doi: 10.1039/C7CS00529F
– ident: e_1_2_7_164_1
  doi: 10.1021/acsaem.0c00122
– ident: e_1_2_7_187_1
  doi: 10.1016/S0013-4686(98)00075-9
– ident: e_1_2_7_71_1
  doi: 10.1039/C8GC03451F
– ident: e_1_2_7_56_2
  doi: 10.1021/j100783a013
– ident: e_1_2_7_99_2
  doi: 10.1016/j.ijhydene.2018.10.132
– ident: e_1_2_7_182_1
  doi: 10.1016/j.jelechem.2009.05.008
– ident: e_1_2_7_10_3
  doi: 10.1016/j.jechem.2018.07.006
– ident: e_1_2_7_1_3
  doi: 10.1038/nature11475
– ident: e_1_2_7_206_1
  doi: 10.1073/pnas.1900556116
– ident: e_1_2_7_17_1
  doi: 10.1038/s42004-019-0169-5
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.201710877
– ident: e_1_2_7_35_3
  doi: 10.1021/jacs.7b08657
– volume: 5
  start-page: 8335
  year: 2012
  ident: e_1_2_7_83_1
  publication-title: Environ. Sci.
– ident: e_1_2_7_219_1
  doi: 10.1021/acssuschemeng.8b01998
– ident: e_1_2_7_111_4
  doi: 10.1039/C9TA10267A
– ident: e_1_2_7_54_1
  doi: 10.1021/ja0644172
– ident: e_1_2_7_217_1
  doi: 10.1016/j.rser.2017.05.258
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: e_1_2_7_142_1
  doi: 10.1016/j.jechem.2022.04.045
– ident: e_1_2_7_16_1
  doi: 10.1039/C8TA03741H
– ident: e_1_2_7_192_1
  doi: 10.1016/j.apcatb.2022.121338
– ident: e_1_2_7_46_1
  doi: 10.1039/c3cp44088e
– ident: e_1_2_7_31_1
  doi: 10.1016/j.cej.2020.125217
– ident: e_1_2_7_209_2
  doi: 10.1002/advs.202200146
– volume: 6
  start-page: 2925
  year: 2013
  ident: e_1_2_7_120_1
  publication-title: Environ. Sci.
– ident: e_1_2_7_68_1
  doi: 10.1021/ja412429f
– ident: e_1_2_7_184_1
  doi: 10.1038/s41467-021-25048-x
– ident: e_1_2_7_211_1
  doi: 10.1021/acscatal.7b03142
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jiec.2021.09.028
– ident: e_1_2_7_128_1
  doi: 10.1016/j.jpowsour.2004.09.043
– volume: 3
  start-page: 438
  year: 2010
  ident: e_1_2_7_133_2
  publication-title: Environ. Sci.
– ident: e_1_2_7_99_3
  doi: 10.1016/j.jpowsour.2014.11.034
– ident: e_1_2_7_38_3
  doi: 10.1021/acscatal.7b03177
– ident: e_1_2_7_185_1
  doi: 10.1038/s41467-021-22250-9
– ident: e_1_2_7_205_1
  doi: 10.1002/adfm.202201127
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.202200409
– ident: e_1_2_7_126_3
  doi: 10.1021/acs.accounts.5b00068
– volume: 12
  start-page: 492
  year: 2019
  ident: e_1_2_7_84_2
  publication-title: Environ. Sci.
– ident: e_1_2_7_7_1
  doi: 10.1039/C9TA01903K
– ident: e_1_2_7_194_1
  doi: 10.1039/D1TA05703K
– ident: e_1_2_7_148_1
  doi: 10.1007/s12274-021-3810-4
– ident: e_1_2_7_135_2
  doi: 10.1007/s10800-016-0993-6
– ident: e_1_2_7_101_3
  doi: 10.1016/j.electacta.2011.10.091
– ident: e_1_2_7_67_1
  doi: 10.1016/j.electacta.2021.139714
– ident: e_1_2_7_90_2
  doi: 10.1038/ncomms11850
– ident: e_1_2_7_101_2
  doi: 10.1016/j.jelechem.2013.05.021
– ident: e_1_2_7_45_1
  doi: 10.1021/acscatal.0c01498
– ident: e_1_2_7_50_1
  doi: 10.1016/j.scitotenv.2010.08.057
– ident: e_1_2_7_56_3
  doi: 10.1039/b110908c
– ident: e_1_2_7_149_1
  doi: 10.1016/j.jechem.2022.02.023
– ident: e_1_2_7_116_2
  doi: 10.1039/C9GC03698A
– ident: e_1_2_7_162_1
  doi: 10.1039/C7CC06378D
– ident: e_1_2_7_181_1
  doi: 10.1038/s41467-018-06815-9
– ident: e_1_2_7_64_1
  doi: 10.1016/j.ica.2021.120488
– ident: e_1_2_7_96_4
  doi: 10.1021/acscatal.9b00190
– ident: e_1_2_7_171_1
  doi: 10.1039/C7NJ00326A
– ident: e_1_2_7_99_1
  doi: 10.1021/cs200599g
– ident: e_1_2_7_111_1
  doi: 10.1039/C9CY01085H
– ident: e_1_2_7_91_1
  doi: 10.1039/C6CY00720A
– ident: e_1_2_7_138_1
  doi: 10.1021/jp5052529
– ident: e_1_2_7_18_1
  doi: 10.1039/D0SE00222D
– ident: e_1_2_7_134_2
  doi: 10.1071/SR04028
– ident: e_1_2_7_69_1
  doi: 10.1021/acsaem.0c01008
– ident: e_1_2_7_50_3
  doi: 10.4319/lo.1967.12.1.0176
– ident: e_1_2_7_90_3
  doi: 10.1002/adfm.202004310
– ident: e_1_2_7_24_1
  doi: 10.1002/adfm.201900315
– ident: e_1_2_7_87_1
  doi: 10.1002/adfm.201910309
– ident: e_1_2_7_141_1
  doi: 10.1016/j.jechem.2021.08.042
– ident: e_1_2_7_53_1
  doi: 10.1002/anie.201503917
– ident: e_1_2_7_147_1
  doi: 10.1016/j.gee.2022.05.001
– ident: e_1_2_7_101_1
  doi: 10.1021/acsami.9b22378
– ident: e_1_2_7_91_4
  doi: 10.1016/j.jpowsour.2013.06.068
– ident: e_1_2_7_204_1
  doi: 10.1016/j.jechem.2022.04.004
– ident: e_1_2_7_135_5
  doi: 10.1016/j.chempr.2019.06.014
– ident: e_1_2_7_6_2
  doi: 10.1002/cssc.202002103
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.201901503
– ident: e_1_2_7_82_1
  doi: 10.1002/cssc.201702075
– ident: e_1_2_7_114_3
  doi: 10.1002/anie.201908722
– ident: e_1_2_7_114_4
  doi: 10.1002/anie.201806298
– ident: e_1_2_7_22_1
  doi: 10.1039/C9TA00878K
– ident: e_1_2_7_159_1
  doi: 10.1002/smll.202103326
– volume: 13
  start-page: 4990
  year: 2020
  ident: e_1_2_7_72_1
  publication-title: Environ. Sci.
– ident: e_1_2_7_106_2
  doi: 10.1039/C8GC02680G
– ident: e_1_2_7_212_1
  doi: 10.1002/anie.201406112
– ident: e_1_2_7_93_1
  doi: 10.1002/cctc.201100023
– ident: e_1_2_7_115_1
  doi: 10.1021/acscatal.8b01017
– ident: e_1_2_7_122_1
  doi: 10.1016/j.elecom.2008.11.031
– ident: e_1_2_7_139_1
  doi: 10.1016/j.apcatb.2022.121389
– ident: e_1_2_7_177_1
  doi: 10.1039/D0NR02196B
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201502095
– ident: e_1_2_7_165_3
  doi: 10.1016/j.cej.2020.126192
– ident: e_1_2_7_95_3
  doi: 10.1016/j.apcatb.2019.01.022
– ident: e_1_2_7_111_6
  doi: 10.1021/acsnano.0c00581
– ident: e_1_2_7_171_3
  doi: 10.1002/celc.201600759
– ident: e_1_2_7_122_4
  doi: 10.1016/j.apcatb.2015.03.059
– ident: e_1_2_7_58_1
  doi: 10.1002/cctc.202000392
– ident: e_1_2_7_77_1
  doi: 10.1021/acssuschemeng.8b02698
– ident: e_1_2_7_168_1
  doi: 10.1002/aenm.201801775
– volume: 11
  start-page: 872
  year: 2018
  ident: e_1_2_7_21_2
  publication-title: Environ. Sci.
– ident: e_1_2_7_167_1
  doi: 10.1016/j.electacta.2019.135211
– ident: e_1_2_7_143_1
  doi: 10.1016/j.jallcom.2022.165234
– volume: 11
  start-page: 1536
  year: 2018
  ident: e_1_2_7_82_2
  publication-title: Environ. Sci.
– ident: e_1_2_7_57_1
  doi: 10.1002/cctc.201601325
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jpowsour.2022.231461
– ident: e_1_2_7_99_4
  doi: 10.1016/j.electacta.2019.03.018
– ident: e_1_2_7_112_1
  doi: 10.1016/j.cattod.2012.05.008
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201800338
– ident: e_1_2_7_6_1
  doi: 10.1109/JPROC.2011.2156750
– ident: e_1_2_7_162_3
  doi: 10.1002/anie.201909832
– ident: e_1_2_7_85_1
  doi: 10.1103/PhysRevLett.93.156801
– ident: e_1_2_7_96_1
  doi: 10.1002/adma.201603374
– ident: e_1_2_7_10_1
  doi: 10.1126/science.1103197
– ident: e_1_2_7_78_1
  doi: 10.1016/j.elecom.2017.08.013
– ident: e_1_2_7_91_2
  doi: 10.1016/j.electacta.2019.06.151
– ident: e_1_2_7_170_2
  doi: 10.1002/aenm.201900390
– ident: e_1_2_7_121_1
  doi: 10.1007/s11244-015-0499-1
– ident: e_1_2_7_130_1
  doi: 10.1016/j.jpowsour.2020.227872
– ident: e_1_2_7_36_1
  doi: 10.1002/ejoc.201300315
– ident: e_1_2_7_84_1
  doi: 10.1016/j.electacta.2007.02.041
– ident: e_1_2_7_10_2
  doi: 10.1002/cssc.202000416
– ident: e_1_2_7_20_2
  doi: 10.1002/adfm.201904020
– ident: e_1_2_7_76_1
  doi: 10.1002/cnma.201700076
– ident: e_1_2_7_178_1
  doi: 10.1039/D0TA08078K
– ident: e_1_2_7_135_3
  doi: 10.1007/s10800-008-9771-4
– ident: e_1_2_7_104_1
  doi: 10.1038/s41467-021-27806-3
– ident: e_1_2_7_136_2
  doi: 10.1016/j.jpowsour.2011.06.079
– volume: 7
  start-page: 3519
  year: 2014
  ident: e_1_2_7_39_2
  publication-title: Environ. Sci.
– ident: e_1_2_7_47_1
  doi: 10.1038/s41929-018-0062-0
– ident: e_1_2_7_111_7
  doi: 10.1039/C9CC06646B
– ident: e_1_2_7_19_1
  doi: 10.1126/sciadv.aap7970
– ident: e_1_2_7_103_1
  doi: 10.1039/C9TA03924D
– ident: e_1_2_7_107_1
  doi: 10.1021/acscatal.8b01697
– ident: e_1_2_7_111_2
  doi: 10.1016/j.jcat.2018.03.010
– ident: e_1_2_7_96_3
  doi: 10.1039/C5TA00076A
– ident: e_1_2_7_14_2
  doi: 10.1021/acsaem.1c01932
– ident: e_1_2_7_1_1
  doi: 10.1016/j.cej.2020.124408
– ident: e_1_2_7_114_5
  doi: 10.1039/D0SC00136H
– ident: e_1_2_7_135_4
  doi: 10.1016/j.chemosphere.2020.129206
– volume: 13
  start-page: 1725
  year: 2020
  ident: e_1_2_7_220_1
  publication-title: Environ Sci
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201612635
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201805127
– ident: e_1_2_7_155_1
  doi: 10.1016/j.cej.2021.133100
– ident: e_1_2_7_133_1
  doi: 10.1016/j.jelechem.2018.10.007
– ident: e_1_2_7_38_2
  doi: 10.1016/j.ijhydene.2018.03.221
– ident: e_1_2_7_81_1
  doi: 10.1002/aenm.201902535
– ident: e_1_2_7_216_1
  doi: 10.1039/D2CC00696K
– ident: e_1_2_7_171_2
  doi: 10.1039/C6QI00384B
– ident: e_1_2_7_24_2
  doi: 10.1002/aenm.201701592
– ident: e_1_2_7_80_1
  doi: 10.1016/j.apcatb.2020.119178
– ident: e_1_2_7_135_1
  doi: 10.1016/j.ijhydene.2020.05.279
– ident: e_1_2_7_168_2
  doi: 10.1002/adfm.201704447
– ident: e_1_2_7_186_1
  doi: 10.1002/anie.202108992
– ident: e_1_2_7_15_3
  doi: 10.1038/s41467-019-13375-z
– ident: e_1_2_7_118_1
  doi: 10.1002/cssc.202000453
– volume: 11
  start-page: 1890
  year: 2018
  ident: e_1_2_7_140_1
  publication-title: Environ. Sci.
– volume: 51
  start-page: 4909
  year: 2022
  ident: e_1_2_7_158_1
  publication-title: John Dalton Prog. Sci., Pap. Conf. Hist. Sci.
– ident: e_1_2_7_174_1
  doi: 10.1039/D1NA00043H
– ident: e_1_2_7_151_1
  doi: 10.1016/j.cej.2020.127308
– ident: e_1_2_7_132_1
  doi: 10.1002/cssc.201501046
– ident: e_1_2_7_157_1
  doi: 10.1039/D2QI00583B
– ident: e_1_2_7_191_1
  doi: 10.1016/j.cej.2022.136987
– ident: e_1_2_7_40_1
  doi: 10.1016/j.susc.2008.08.011
– ident: e_1_2_7_89_1
  doi: 10.1038/ncomms5036
– ident: e_1_2_7_59_1
  doi: 10.1002/adfm.201909610
– ident: e_1_2_7_95_2
  doi: 10.1002/adma.201804763
– ident: e_1_2_7_11_2
  doi: 10.1039/C6MH00016A
– volume: 8
  start-page: 2347
  year: 2015
  ident: e_1_2_7_115_4
  publication-title: Environ. Sci.
– volume: 11
  start-page: 1232
  year: 2018
  ident: e_1_2_7_111_3
  publication-title: Environ. Sci.
– ident: e_1_2_7_106_1
  doi: 10.1021/acscatal.5b01491
– ident: e_1_2_7_166_2
  doi: 10.1038/s41467-018-05878-y
– ident: e_1_2_7_137_1
  doi: 10.1016/j.apcatb.2021.120462
– ident: e_1_2_7_198_1
  doi: 10.1039/D1CC05745F
– ident: e_1_2_7_170_3
  doi: 10.1016/j.cej.2021.128818
– ident: e_1_2_7_15_2
  doi: 10.1016/j.cej.2019.122289
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.analchem.7b05299
– ident: e_1_2_7_203_1
  doi: 10.1016/j.elecom.2009.06.022
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.201710460
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jcat.2019.12.019
– ident: e_1_2_7_75_1
  doi: 10.1021/acsenergylett.6b00214
– ident: e_1_2_7_188_1
  doi: 10.1021/acsaem.0c01040
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.202108563
– ident: e_1_2_7_84_3
  doi: 10.1021/acs.chemrev.8b00705
– ident: e_1_2_7_170_4
  doi: 10.1039/D2QI01699K
– ident: e_1_2_7_180_1
  doi: 10.1021/acsami.1c09503
– ident: e_1_2_7_175_1
  doi: 10.1016/j.jelechem.2020.114740
– ident: e_1_2_7_181_3
  doi: 10.1002/anie.201803543
– ident: e_1_2_7_118_2
  doi: 10.1021/acssuschemeng.9b00203
– ident: e_1_2_7_172_1
  doi: 10.1016/j.apcatb.2022.121132
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201807898
– ident: e_1_2_7_95_1
  doi: 10.1021/acscatal.6b00709
– ident: e_1_2_7_14_1
  doi: 10.1002/aenm.202101180
– ident: e_1_2_7_35_1
  doi: 10.1038/nchem.2194
– ident: e_1_2_7_173_1
  doi: 10.1016/j.ijhydene.2021.11.235
– ident: e_1_2_7_210_1
  doi: 10.1016/0013-4686(84)85004-5
– ident: e_1_2_7_201_1
  doi: 10.1002/cssc.202101800
– ident: e_1_2_7_214_1
  doi: 10.1021/ja807769r
– ident: e_1_2_7_65_1
  doi: 10.1002/celc.202200092
– ident: e_1_2_7_105_1
  doi: 10.1021/jacs.8b09917
– ident: e_1_2_7_105_2
  doi: 10.1021/ie901012g
– ident: e_1_2_7_34_1
  doi: 10.1039/D0CS00130A
– ident: e_1_2_7_207_2
  doi: 10.2320/matertrans1989.38.899
– ident: e_1_2_7_52_1
  doi: 10.1021/jp209506d
– ident: e_1_2_7_165_2
  doi: 10.1016/j.cej.2019.122603
– ident: e_1_2_7_5_4
  doi: 10.1007/s41918-020-00087-y
– ident: e_1_2_7_116_1
  doi: 10.1002/cssc.201800695
– ident: e_1_2_7_200_1
  doi: 10.1016/j.electacta.2021.138833
– ident: e_1_2_7_33_1
  doi: 10.1002/eem2.12318
– ident: e_1_2_7_92_1
  doi: 10.3390/en13061483
– ident: e_1_2_7_8_2
  doi: 10.1016/j.chempr.2017.12.019
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1257443
– ident: e_1_2_7_43_2
  doi: 10.1021/jp037215q
– ident: e_1_2_7_162_2
  doi: 10.1002/anie.202100610
– ident: e_1_2_7_109_1
  doi: 10.1038/s41929-021-00721-y
– ident: e_1_2_7_107_3
  doi: 10.1021/acscatal.6b01861
– ident: e_1_2_7_163_1
  doi: 10.1038/s41560-021-00899-2
– ident: e_1_2_7_3_2
  doi: 10.1016/j.ijhydene.2019.01.168
– volume: 5
  start-page: 6640
  year: 2012
  ident: e_1_2_7_3_3
  publication-title: Environ. Sci.
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.202107886
– ident: e_1_2_7_115_3
  doi: 10.1021/acs.jpclett.6b02249
– volume: 5
  start-page: 6407
  year: 2012
  ident: e_1_2_7_48_1
  publication-title: Environ Sci
– ident: e_1_2_7_129_1
  doi: 10.1002/anie.201807717
– ident: e_1_2_7_181_2
  doi: 10.1039/C8TA06827E
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.202103673
– ident: e_1_2_7_73_1
  doi: 10.1039/D2GC00989G
– ident: e_1_2_7_4_1
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_7_167_3
  doi: 10.1002/adfm.201706847
– ident: e_1_2_7_5_3
  doi: 10.1007/s41918-020-00086-z
– ident: e_1_2_7_161_1
  doi: 10.1002/adfm.202000556
– ident: e_1_2_7_199_1
  doi: 10.1021/jacs.8b05382
– ident: e_1_2_7_28_1
  doi: 10.1016/j.nanoen.2022.107467
– ident: e_1_2_7_86_1
  doi: 10.1039/B804591G
– ident: e_1_2_7_74_1
  doi: 10.1002/cssc.201702119
– ident: e_1_2_7_116_3
  doi: 10.1039/C7GC01012E
– ident: e_1_2_7_154_1
  doi: 10.1021/acsami.1c18593
– ident: e_1_2_7_50_2
  doi: 10.1038/s41467-018-07882-8
– ident: e_1_2_7_125_1
  doi: 10.1002/adma.202104791
– ident: e_1_2_7_62_1
  doi: 10.1021/acscatal.7b03319
– ident: e_1_2_7_38_1
  doi: 10.1002/slct.201702071
– ident: e_1_2_7_117_1
  doi: 10.1021/acsaem.9b01852
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.chemmater.1c02535
– ident: e_1_2_7_61_1
  doi: 10.1002/smll.201602970
– ident: e_1_2_7_100_2
  doi: 10.1039/b212047j
– ident: e_1_2_7_105_3
  doi: 10.1016/j.cej.2020.125303
– volume: 9
  start-page: 1725
  year: 2016
  ident: e_1_2_7_218_1
  publication-title: Environ Sci
– ident: e_1_2_7_96_2
  doi: 10.1002/anie.201908586
– ident: e_1_2_7_122_3
  doi: 10.1002/chem.201203378
– ident: e_1_2_7_107_2
  doi: 10.1021/acssuschemeng.0c07480
– ident: e_1_2_7_111_5
  doi: 10.1039/C8CS00671G
– ident: e_1_2_7_114_1
  doi: 10.1039/C9TA03580J
– volume: 8
  start-page: 2910
  year: 2015
  ident: e_1_2_7_98_1
  publication-title: Environ. Sci.
– ident: e_1_2_7_55_1
  doi: 10.1007/s11244-007-9004-9
– ident: e_1_2_7_195_1
  doi: 10.1002/adfm.202201081
– volume: 4
  start-page: 1255
  year: 2011
  ident: e_1_2_7_169_1
  publication-title: Environ Sci
– ident: e_1_2_7_114_2
  doi: 10.1002/anie.202005489
– ident: e_1_2_7_166_1
  doi: 10.1002/celc.201901423
– ident: e_1_2_7_167_2
  doi: 10.1021/acssuschemeng.9b03275
– ident: e_1_2_7_126_2
  doi: 10.1021/acscatal.5b01479
– ident: e_1_2_7_51_1
  doi: 10.1039/c3sc50205h
– ident: e_1_2_7_88_1
  doi: 10.1016/j.cattod.2012.08.013
– ident: e_1_2_7_179_1
  doi: 10.1002/adma.201401969
– ident: e_1_2_7_150_1
  doi: 10.1016/j.cej.2022.135743
– ident: e_1_2_7_181_4
  doi: 10.1039/C8TA06361C
– ident: e_1_2_7_49_1
  doi: 10.1002/cssc.201501581
– ident: e_1_2_7_102_1
  doi: 10.1021/acsami.9b08441
– ident: e_1_2_7_8_4
  doi: 10.1021/ja4071893
– ident: e_1_2_7_215_1
  doi: 10.1002/anie.201712121
– ident: e_1_2_7_1_2
  doi: 10.1007/s11705-021-2102-6
– ident: e_1_2_7_202_1
  doi: 10.1039/D0TA08543J
– ident: e_1_2_7_108_1
  doi: 10.1039/C4GC00401A
– ident: e_1_2_7_145_1
  doi: 10.1016/j.jpowsour.2021.230882
– ident: e_1_2_7_126_1
  doi: 10.1002/anie.201403110
– ident: e_1_2_7_193_1
  doi: 10.1039/D1TA07328A
– ident: e_1_2_7_66_1
  doi: 10.1007/s12274-017-1714-0
– ident: e_1_2_7_44_1
  doi: 10.1021/ja904010u
– ident: e_1_2_7_146_1
  doi: 10.1039/D0TA08475A
– ident: e_1_2_7_189_1
  doi: 10.1021/jacs.2c00242
– ident: e_1_2_7_122_2
  doi: 10.1021/jp8060043
– ident: e_1_2_7_131_1
  doi: 10.1016/j.apcatb.2017.07.005
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ijhydene.2014.12.035
– ident: e_1_2_7_8_3
  doi: 10.1038/ncomms11741
– ident: e_1_2_7_115_2
  doi: 10.1021/acscentsci.5b00227
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201910274
– ident: e_1_2_7_19_2
  doi: 10.1002/adma.201605957
– ident: e_1_2_7_124_1
  doi: 10.1021/jacs.2c00465
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.jchemed.7b00361
– ident: e_1_2_7_91_3
  doi: 10.1016/j.ijhydene.2019.10.124
– ident: e_1_2_7_35_4
  doi: 10.1002/anie.201603798
– ident: e_1_2_7_136_1
  doi: 10.1039/C6TA11127K
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.accounts.8b00002
– ident: e_1_2_7_114_6
  doi: 10.1039/C9TA06917H
– ident: e_1_2_7_79_1
  doi: 10.1038/s41467-019-14157-3
– ident: e_1_2_7_25_1
  doi: 10.1002/adfm.201706018
– ident: e_1_2_7_56_1
  doi: 10.1016/j.jcat.2020.02.003
– ident: e_1_2_7_134_1
  doi: 10.1002/ente.201600185
– ident: e_1_2_7_207_1
  doi: 10.1039/D0RA02128H
– ident: e_1_2_7_196_1
  doi: 10.1021/acsaem.0c00383
– ident: e_1_2_7_190_1
  doi: 10.1016/j.apcatb.2021.120071
SSID ssj0000491033
Score 2.6508303
SecondaryResourceType review_article
Snippet Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aldehydes
Anodizing
Electrocatalysts
Electrochemical oxidation
electrode engineering
Electrolysis
Electrolytes
Energy conversion
Energy sources
high‐efficient hydrogen production
Hybrid systems
hybrid water electrolysis
Hydrazines
Lifetime
Oxidation
Oxygen evolution reactions
Reservoirs
Seawater
Selectivity
small molecule oxidation
Title Circumventing Challenges: Design of Anodic Electrocatalysts for Hybrid Water Electrolysis Systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203568
https://www.proquest.com/docview/2770184766
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6l4dIeqtJSNS2gPVTiEJnau_GD3iIIihDhQlChF8veh4hU7AriA_0Z_cWdfXi9QUEFLlay3rXjzOfZmdmZbxH6GjERZzSRASUZOChFyIKMyoNAJuEBU9nukVC1w7OzZHoxOrmML3u9v17WUrMs99mftXUlL5EqtIFcVZXsMyTrLgoN8BnkC0eQMByfJOPDxS1rbnTGolq9b_dF0VluRzo1QxuaVc0XbDgxG97oeM393VLzMAyn96pia_ijUFyJtochKfGpzFuW2jZfQJiCwRs1Sj1lF5U3mmNa1C6J4qrp1p1soj50as-eioVb8rFlIovKnZ0XtdNKjYnU_ryuveFXtZ14bdyCUC9uYVQtGAZBktnopvDbDIGT08_Uw-Fordo3NLKFqBS3ACEhjc1ePav82g_mPZeNaJibSa7G5278K7RBwPUgfbQxPpqdnrvIHfhUUUh15Ub7CC0baEi-rf6IVWunc2F8R0hbMvN36K11QfDY4GkT9UT1Hr3xiCk_oGIFWbhD1ndscIVriQ2u8ENcYcAVNrjCGlfYxxW2uNpCF8eT-eE0sJtxBAxMTBV0lmB8lyknXCiKqCjmVPJMrbOSJI2gE5NlJGjMAYdCgOedMnAHmCBUyrjk9CPqV3UlPiEsZMqZmknSEXSgBSgEGEUzyllKOacDFLR_Ws4sU73aMOVXvl5SA7Tn-v82HC2P9txuZZDb9_guBymHERhpSTJARMvlP1fJx5Ozmfv2-cl3_4Jedy_CNuovbxuxAybtsty1GPsHgDuauw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circumventing+Challenges%3A+Design+of+Anodic+Electrocatalysts+for+Hybrid+Water+Electrolysis+Systems&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Hao%E2%80%90Yu&rft.au=Sun%2C+Ming%E2%80%90Lei&rft.au=Ren%2C+Jin%E2%80%90Tao&rft.au=Yuan%2C+Zhong%E2%80%90Yong&rft.date=2023-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1002%2Faenm.202203568&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202203568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon