Circumventing Challenges: Design of Anodic Electrocatalysts for Hybrid Water Electrolysis Systems
Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, ex...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, explosive hydrogen/oxygen mixtures, reactive oxygen species, and limited pure water. Hybrid water electrolysis, appending different electrolytes in the anode compartment to circumvent the above‐mentioned challenges in conventional water electrolysis, is a particularly attractive alternative. In this review, for the first time, a holistic and subtle description of hybrid water electrolysis is provided, focusing on the design of high‐activity/selectivity/stability anodic electrocatalysts for the electrochemical oxidation of various chemicals, such as alcohol, aldehyde, amine, urea and hydrazine, or the oxygen evolution reaction in seawater electrolytes. Comprehensive judging criteria for anodic oxidation reactions, electrocatalysts, and reaction parameters in hybrid water electrolysis are discussed. Some technoeconomic assessments, feasibility analyses, mechanism explorations, and correlation comparisons are involved. Finally, perspectives on and opportunities for future research directions in hybrid water electrolysis systems are outlined.
Hybrid water electrolysis can circumvent the challenges of conventional water electrolysis and show several advantages, including energy efficiency, cost, and safety. Based on the considerations of alternative oxidation reactions, electrocatalysts and reaction parameters for hybrid water electrolysis, several judging criteria are proposed. |
---|---|
AbstractList | Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, explosive hydrogen/oxygen mixtures, reactive oxygen species, and limited pure water. Hybrid water electrolysis, appending different electrolytes in the anode compartment to circumvent the above‐mentioned challenges in conventional water electrolysis, is a particularly attractive alternative. In this review, for the first time, a holistic and subtle description of hybrid water electrolysis is provided, focusing on the design of high‐activity/selectivity/stability anodic electrocatalysts for the electrochemical oxidation of various chemicals, such as alcohol, aldehyde, amine, urea and hydrazine, or the oxygen evolution reaction in seawater electrolytes. Comprehensive judging criteria for anodic oxidation reactions, electrocatalysts, and reaction parameters in hybrid water electrolysis are discussed. Some technoeconomic assessments, feasibility analyses, mechanism explorations, and correlation comparisons are involved. Finally, perspectives on and opportunities for future research directions in hybrid water electrolysis systems are outlined. Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, explosive hydrogen/oxygen mixtures, reactive oxygen species, and limited pure water. Hybrid water electrolysis, appending different electrolytes in the anode compartment to circumvent the above‐mentioned challenges in conventional water electrolysis, is a particularly attractive alternative. In this review, for the first time, a holistic and subtle description of hybrid water electrolysis is provided, focusing on the design of high‐activity/selectivity/stability anodic electrocatalysts for the electrochemical oxidation of various chemicals, such as alcohol, aldehyde, amine, urea and hydrazine, or the oxygen evolution reaction in seawater electrolytes. Comprehensive judging criteria for anodic oxidation reactions, electrocatalysts, and reaction parameters in hybrid water electrolysis are discussed. Some technoeconomic assessments, feasibility analyses, mechanism explorations, and correlation comparisons are involved. Finally, perspectives on and opportunities for future research directions in hybrid water electrolysis systems are outlined. Hybrid water electrolysis can circumvent the challenges of conventional water electrolysis and show several advantages, including energy efficiency, cost, and safety. Based on the considerations of alternative oxidation reactions, electrocatalysts and reaction parameters for hybrid water electrolysis, several judging criteria are proposed. |
Author | Yuan, Zhong‐Yong Wang, Hao‐Yu Sun, Ming‐Lei Ren, Jin‐Tao |
Author_xml | – sequence: 1 givenname: Hao‐Yu surname: Wang fullname: Wang, Hao‐Yu organization: Nankai University – sequence: 2 givenname: Ming‐Lei surname: Sun fullname: Sun, Ming‐Lei organization: Nankai University – sequence: 3 givenname: Jin‐Tao surname: Ren fullname: Ren, Jin‐Tao organization: Nankai University – sequence: 4 givenname: Zhong‐Yong orcidid: 0000-0002-3790-8181 surname: Yuan fullname: Yuan, Zhong‐Yong email: zyyuan@nankai.edu.cn organization: Nankai University |
BookMark | eNqFkE1LAzEQhoMoWGuvngOeW_Oxu9l6K7VaoepBxeOSJpOask1qkir7791SrSCIc5mBeZ4ZeE_QofMOEDqjZEAJYRcS3GrACGOE50V5gDq0oFm_KDNyuJ85O0a9GJekrWxICecdJMc2qM3qHVyyboHHr7KuwS0gXuIriHbhsDd45Ly2Ck9qUCl4JZOsm5giNj7gaTMPVuMXmSB8E-3WRvzYMrCKp-jIyDpC76t30fP15Gk87c8ebm7Ho1lfcSrKflYaxtlcaKaBCCJorrnRZZ7TghWCtpAycwo81wo0AKGZUCTPFDBuTD7XvIvOd3fXwb9tIKZq6TfBtS8rJgShZSaKoqWyHaWCjzGAqZRNMlnvUpC2riiptnlW2zyrfZ6tNvilrYNdydD8LQx3woetofmHrkaT-7sf9xPECouV |
CitedBy_id | crossref_primary_10_1039_D4SC03033H crossref_primary_10_1002_anie_202300390 crossref_primary_10_1016_j_apsusc_2023_157445 crossref_primary_10_1039_D3QM00291H crossref_primary_10_1002_advs_202300639 crossref_primary_10_1038_s41467_023_43698_x crossref_primary_10_1039_D3EE02981F crossref_primary_10_1002_adma_202308647 crossref_primary_10_1016_j_ccr_2024_215901 crossref_primary_10_1002_adfm_202421346 crossref_primary_10_1021_acsnano_4c08058 crossref_primary_10_1007_s40820_023_01080_y crossref_primary_10_1021_acsmaterialslett_3c01235 crossref_primary_10_1016_j_jcis_2023_09_189 crossref_primary_10_1002_aenm_202402429 crossref_primary_10_1039_D3TA05321K crossref_primary_10_1002_anie_202401364 crossref_primary_10_1039_D4NR01178C crossref_primary_10_1002_ange_202412087 crossref_primary_10_1002_ange_202416763 crossref_primary_10_1039_D4TA05436A crossref_primary_10_1016_j_fuel_2024_132782 crossref_primary_10_1002_aenm_202302515 crossref_primary_10_1007_s10853_024_10433_w crossref_primary_10_1021_acssuschemeng_3c03909 crossref_primary_10_1002_ange_202300390 crossref_primary_10_1016_j_mseb_2023_116884 crossref_primary_10_1039_D3TA04387H crossref_primary_10_1016_j_cej_2024_151236 crossref_primary_10_1002_aenm_202400563 crossref_primary_10_1021_acs_inorgchem_3c04285 crossref_primary_10_1002_ange_202401364 crossref_primary_10_1039_D3NR04454H crossref_primary_10_1002_anie_202318248 crossref_primary_10_1021_acsnano_3c10867 crossref_primary_10_1007_s40820_023_01128_z crossref_primary_10_3390_inorganics13030084 crossref_primary_10_1002_cctc_202301165 crossref_primary_10_1039_D4CC02729A crossref_primary_10_1039_D3TA07418H crossref_primary_10_1002_cben_202300068 crossref_primary_10_1016_j_apcatb_2023_122870 crossref_primary_10_1002_anie_202412087 crossref_primary_10_1002_adma_202408114 crossref_primary_10_1016_j_jcis_2023_11_054 crossref_primary_10_1002_anie_202416763 crossref_primary_10_1002_cctc_202402013 crossref_primary_10_1021_acs_chemrev_3c00723 crossref_primary_10_1039_D4EY00090K crossref_primary_10_1002_ange_202318248 crossref_primary_10_3390_en16186503 crossref_primary_10_1016_j_ccr_2024_215880 crossref_primary_10_1002_aenm_202402611 crossref_primary_10_1039_D4CS00517A crossref_primary_10_1002_aenm_202401242 crossref_primary_10_1021_acs_inorgchem_4c04195 crossref_primary_10_1021_acsnano_4c04831 crossref_primary_10_1039_D4TA01953A crossref_primary_10_1002_advs_202411964 crossref_primary_10_1002_cey2_696 crossref_primary_10_1039_D4TA01071J crossref_primary_10_1016_j_cej_2024_152028 crossref_primary_10_1002_adfm_202407586 crossref_primary_10_1002_smll_202411269 crossref_primary_10_1021_acsnano_3c03095 crossref_primary_10_1039_D3QI01113E crossref_primary_10_1016_j_cej_2023_146134 crossref_primary_10_1039_D3QI01686B crossref_primary_10_1021_acscatal_3c01885 crossref_primary_10_1002_smll_202300194 crossref_primary_10_1002_smll_202309122 crossref_primary_10_1039_D4SC01160K crossref_primary_10_1039_D3EE02467A crossref_primary_10_1021_acsami_3c13929 crossref_primary_10_1016_j_ccr_2024_215752 crossref_primary_10_1002_smll_202401343 crossref_primary_10_1016_j_ccr_2023_215410 crossref_primary_10_1002_adma_202404806 crossref_primary_10_1039_D4GC02727B crossref_primary_10_1039_D3GC03179A crossref_primary_10_1039_D4QI01740D crossref_primary_10_1039_D4CC01751J crossref_primary_10_1016_j_cej_2023_144660 crossref_primary_10_1021_acsanm_5c00443 |
Cites_doi | 10.1016/j.jpowsour.2013.07.028 10.1002/anie.201205314 10.1002/eem2.12409 10.1039/C9GC02880C 10.1016/j.electacta.2020.136954 10.1021/acscatal.6b01838 10.1038/s41560-020-0550-8 10.1038/s41929-019-0279-6 10.1039/C9NR09959J 10.1039/D0TA08709B 10.1016/j.cej.2022.134497 10.1002/anie.200907128 10.1016/j.jechem.2020.01.035 10.1007/s41918-020-00084-1 10.1002/cplu.201600029 10.1039/C8TA05064C 10.1016/j.elecom.2011.05.031 10.1039/D2TA00120A 10.1002/celc.201900675 10.1002/celc.201901592 10.1002/adfm.201908235 10.1016/0360-3199(80)90021-X 10.1016/j.ijhydene.2020.09.058 10.1021/acscatal.7b00876 10.1016/j.cej.2020.128067 10.1016/j.mtnano.2022.100216 10.1039/C8CC01830H 10.1126/science.281.5374.237 10.1016/j.jiec.2022.05.043 10.1002/anie.201608899 10.1016/j.colsurfa.2013.04.019 10.1039/D0TA09473K 10.1039/D1GC00914A 10.1016/j.apcatb.2020.119740 10.1021/ar500426g 10.1021/jacs.6b07127 10.1039/C7CS00529F 10.1021/acsaem.0c00122 10.1016/S0013-4686(98)00075-9 10.1039/C8GC03451F 10.1021/j100783a013 10.1016/j.ijhydene.2018.10.132 10.1016/j.jelechem.2009.05.008 10.1016/j.jechem.2018.07.006 10.1038/nature11475 10.1073/pnas.1900556116 10.1038/s42004-019-0169-5 10.1002/anie.201710877 10.1021/jacs.7b08657 10.1021/acssuschemeng.8b01998 10.1039/C9TA10267A 10.1021/ja0644172 10.1016/j.rser.2017.05.258 10.1016/j.ijhydene.2013.01.151 10.1016/j.jechem.2022.04.045 10.1039/C8TA03741H 10.1016/j.apcatb.2022.121338 10.1039/c3cp44088e 10.1016/j.cej.2020.125217 10.1002/advs.202200146 10.1021/ja412429f 10.1038/s41467-021-25048-x 10.1021/acscatal.7b03142 10.1016/j.jiec.2021.09.028 10.1016/j.jpowsour.2004.09.043 10.1016/j.jpowsour.2014.11.034 10.1021/acscatal.7b03177 10.1038/s41467-021-22250-9 10.1002/adfm.202201127 10.1002/aenm.202200409 10.1021/acs.accounts.5b00068 10.1039/C9TA01903K 10.1039/D1TA05703K 10.1007/s12274-021-3810-4 10.1007/s10800-016-0993-6 10.1016/j.electacta.2011.10.091 10.1016/j.electacta.2021.139714 10.1038/ncomms11850 10.1016/j.jelechem.2013.05.021 10.1021/acscatal.0c01498 10.1016/j.scitotenv.2010.08.057 10.1039/b110908c 10.1016/j.jechem.2022.02.023 10.1039/C9GC03698A 10.1039/C7CC06378D 10.1038/s41467-018-06815-9 10.1016/j.ica.2021.120488 10.1021/acscatal.9b00190 10.1039/C7NJ00326A 10.1021/cs200599g 10.1039/C9CY01085H 10.1039/C6CY00720A 10.1021/jp5052529 10.1039/D0SE00222D 10.1071/SR04028 10.1021/acsaem.0c01008 10.4319/lo.1967.12.1.0176 10.1002/adfm.202004310 10.1002/adfm.201900315 10.1002/adfm.201910309 10.1016/j.jechem.2021.08.042 10.1002/anie.201503917 10.1016/j.gee.2022.05.001 10.1021/acsami.9b22378 10.1016/j.jpowsour.2013.06.068 10.1016/j.jechem.2022.04.004 10.1016/j.chempr.2019.06.014 10.1002/cssc.202002103 10.1002/aenm.201901503 10.1002/cssc.201702075 10.1002/anie.201908722 10.1002/anie.201806298 10.1039/C9TA00878K 10.1002/smll.202103326 10.1039/C8GC02680G 10.1002/anie.201406112 10.1002/cctc.201100023 10.1021/acscatal.8b01017 10.1016/j.elecom.2008.11.031 10.1016/j.apcatb.2022.121389 10.1039/D0NR02196B 10.1002/aenm.201502095 10.1016/j.cej.2020.126192 10.1016/j.apcatb.2019.01.022 10.1021/acsnano.0c00581 10.1002/celc.201600759 10.1016/j.apcatb.2015.03.059 10.1002/cctc.202000392 10.1021/acssuschemeng.8b02698 10.1002/aenm.201801775 10.1016/j.electacta.2019.135211 10.1016/j.jallcom.2022.165234 10.1002/cctc.201601325 10.1016/j.jpowsour.2022.231461 10.1016/j.electacta.2019.03.018 10.1016/j.cattod.2012.05.008 10.1002/aenm.201800338 10.1109/JPROC.2011.2156750 10.1002/anie.201909832 10.1103/PhysRevLett.93.156801 10.1002/adma.201603374 10.1126/science.1103197 10.1016/j.elecom.2017.08.013 10.1016/j.electacta.2019.06.151 10.1002/aenm.201900390 10.1007/s11244-015-0499-1 10.1016/j.jpowsour.2020.227872 10.1002/ejoc.201300315 10.1016/j.electacta.2007.02.041 10.1002/cssc.202000416 10.1002/adfm.201904020 10.1002/cnma.201700076 10.1039/D0TA08078K 10.1007/s10800-008-9771-4 10.1038/s41467-021-27806-3 10.1016/j.jpowsour.2011.06.079 10.1038/s41929-018-0062-0 10.1039/C9CC06646B 10.1126/sciadv.aap7970 10.1039/C9TA03924D 10.1021/acscatal.8b01697 10.1016/j.jcat.2018.03.010 10.1039/C5TA00076A 10.1021/acsaem.1c01932 10.1016/j.cej.2020.124408 10.1039/D0SC00136H 10.1016/j.chemosphere.2020.129206 10.1002/anie.201612635 10.1002/adma.201805127 10.1016/j.cej.2021.133100 10.1016/j.jelechem.2018.10.007 10.1016/j.ijhydene.2018.03.221 10.1002/aenm.201902535 10.1039/D2CC00696K 10.1039/C6QI00384B 10.1002/aenm.201701592 10.1016/j.apcatb.2020.119178 10.1016/j.ijhydene.2020.05.279 10.1002/adfm.201704447 10.1002/anie.202108992 10.1038/s41467-019-13375-z 10.1002/cssc.202000453 10.1039/D1NA00043H 10.1016/j.cej.2020.127308 10.1002/cssc.201501046 10.1039/D2QI00583B 10.1016/j.cej.2022.136987 10.1016/j.susc.2008.08.011 10.1038/ncomms5036 10.1002/adfm.201909610 10.1002/adma.201804763 10.1039/C6MH00016A 10.1021/acscatal.5b01491 10.1038/s41467-018-05878-y 10.1016/j.apcatb.2021.120462 10.1039/D1CC05745F 10.1016/j.cej.2021.128818 10.1016/j.cej.2019.122289 10.1021/acs.analchem.7b05299 10.1016/j.elecom.2009.06.022 10.1002/anie.201710460 10.1016/j.jcat.2019.12.019 10.1021/acsenergylett.6b00214 10.1021/acsaem.0c01040 10.1002/anie.202108563 10.1021/acs.chemrev.8b00705 10.1039/D2QI01699K 10.1021/acsami.1c09503 10.1016/j.jelechem.2020.114740 10.1002/anie.201803543 10.1021/acssuschemeng.9b00203 10.1016/j.apcatb.2022.121132 10.1002/adma.201807898 10.1021/acscatal.6b00709 10.1002/aenm.202101180 10.1038/nchem.2194 10.1016/j.ijhydene.2021.11.235 10.1016/0013-4686(84)85004-5 10.1002/cssc.202101800 10.1021/ja807769r 10.1002/celc.202200092 10.1021/jacs.8b09917 10.1021/ie901012g 10.1039/D0CS00130A 10.2320/matertrans1989.38.899 10.1021/jp209506d 10.1016/j.cej.2019.122603 10.1007/s41918-020-00087-y 10.1002/cssc.201800695 10.1016/j.electacta.2021.138833 10.1002/eem2.12318 10.3390/en13061483 10.1016/j.chempr.2017.12.019 10.1126/science.1257443 10.1021/jp037215q 10.1002/anie.202100610 10.1038/s41929-021-00721-y 10.1021/acscatal.6b01861 10.1038/s41560-021-00899-2 10.1016/j.ijhydene.2019.01.168 10.1002/anie.202107886 10.1021/acs.jpclett.6b02249 10.1002/anie.201807717 10.1039/C8TA06827E 10.1002/adfm.202103673 10.1039/D2GC00989G 10.1038/s41570-016-0003 10.1002/adfm.201706847 10.1007/s41918-020-00086-z 10.1002/adfm.202000556 10.1021/jacs.8b05382 10.1016/j.nanoen.2022.107467 10.1039/B804591G 10.1002/cssc.201702119 10.1039/C7GC01012E 10.1021/acsami.1c18593 10.1038/s41467-018-07882-8 10.1002/adma.202104791 10.1021/acscatal.7b03319 10.1002/slct.201702071 10.1021/acsaem.9b01852 10.1021/acs.chemmater.1c02535 10.1002/smll.201602970 10.1039/b212047j 10.1016/j.cej.2020.125303 10.1002/anie.201908586 10.1002/chem.201203378 10.1021/acssuschemeng.0c07480 10.1039/C8CS00671G 10.1039/C9TA03580J 10.1007/s11244-007-9004-9 10.1002/adfm.202201081 10.1002/anie.202005489 10.1002/celc.201901423 10.1021/acssuschemeng.9b03275 10.1021/acscatal.5b01479 10.1039/c3sc50205h 10.1016/j.cattod.2012.08.013 10.1002/adma.201401969 10.1016/j.cej.2022.135743 10.1039/C8TA06361C 10.1002/cssc.201501581 10.1021/acsami.9b08441 10.1021/ja4071893 10.1002/anie.201712121 10.1007/s11705-021-2102-6 10.1039/D0TA08543J 10.1039/C4GC00401A 10.1016/j.jpowsour.2021.230882 10.1002/anie.201403110 10.1039/D1TA07328A 10.1007/s12274-017-1714-0 10.1021/ja904010u 10.1039/D0TA08475A 10.1021/jacs.2c00242 10.1021/jp8060043 10.1016/j.apcatb.2017.07.005 10.1016/j.ijhydene.2014.12.035 10.1038/ncomms11741 10.1021/acscentsci.5b00227 10.1002/adfm.201910274 10.1002/adma.201605957 10.1021/jacs.2c00465 10.1021/acs.jchemed.7b00361 10.1016/j.ijhydene.2019.10.124 10.1002/anie.201603798 10.1039/C6TA11127K 10.1021/acs.accounts.8b00002 10.1039/C9TA06917H 10.1038/s41467-019-14157-3 10.1002/adfm.201706018 10.1016/j.jcat.2020.02.003 10.1002/ente.201600185 10.1039/D0RA02128H 10.1021/acsaem.0c00383 10.1016/j.apcatb.2021.120071 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202203568 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202203568 AENM202203568 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22179065; 22111530112; 21875118 – fundername: NKU School of Materials Science and Engineering |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3178-48f232b7d2de070715d3fd855162671c31cfb1e35dcedee0147c054ce23ff5bd3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:08:52 EDT 2025 Tue Jul 01 01:43:48 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Jan 22 16:24:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3178-48f232b7d2de070715d3fd855162671c31cfb1e35dcedee0147c054ce23ff5bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3790-8181 |
PQID | 2770184766 |
PQPubID | 886389 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2770184766 crossref_citationtrail_10_1002_aenm_202203568 crossref_primary_10_1002_aenm_202203568 wiley_primary_10_1002_aenm_202203568_AENM202203568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 83 2013; 4 2016 2004; 4 42 2012 2004; 51 108 2016 2019 2019 2013; 6 319 44 242 2019; 11 2022; 24 2014; 26 2019 2018 2018 2019 2019 2020 2019; 9 361 11 7 48 14 55 2014 2015 2015; 53 5 48 2017 2011; 5 196 2018 2018; 28 57 2020; 13 2020; 12 2021; 284 2020; 11 2018 2018; 8 28 2020; 10 2019 2020 2019 2018 2020 2020; 7 59 58 57 11 8 2018 2015 2017 2015; 8 1 8 8 2018 2020 2020; 6 381 402 2016 2019 2019; 6 31 245 2013; 6 2014; 136 2018; 47 2009; 633 2018; 6 2009; 11 2018; 8 2022 2020; 34 360 2013; 2013 2018; 1 2019; 21 2014; 16 2021; 390 2020; 453 2022; 32 2020 2022; 13 9 2009 2008 2013 2015; 11 112 19 176‐177 2018 2010 2022; 829 3 10 2010 2019 1967; 408 10 12 2022; 446 2015 2019 2012; 40 44 5 2014; 245 2019; 7 2017 2019 2021 2022; 56 9 414 9 2019; 9 2015; 58 2014 2018 2016 2013; 345 4 7 135 2019; 31 2019; 2 2018 2017; 4 29 2015; 54 2011; 4 2019 2018; 7 57 2011; 3 2022; 912 2017 2021 2019; 53 60 58 2022; 113 2020 1997; 10 38 32 2022; 100 2012; 195 2021; 417 2016; 6 2010; 49 2016; 1 2021 2021; 11 4 2020 2018; 7 9 2020; 30 2020; 396 2022; 5 2019 2016; 7 81 2022; 9 2022; 13 2009 2020; 131 45 2018 2020 2021; 8 5 9 2022; 15 2020; 277 2020 2019; 13 7 2021; 60 2018; 11 2012; 116 2020 2020 2019; 382 379 10 2022; 105 2016; 9 2022; 18 2017; 7 2018 2020 2017; 11 22 19 2021; 408 2017; 1 2017; 3 2022; 70 2018 2018; 11 11 2022; 72 2022 2021 2021 2021; 12 4 4 4 2021; 525 2020 1964 2002; 384 68 121 2018; 81 2013; 202 2011; 13 2012 2018 2015 2019; 2 43 275 305 1984; 29 2012 2021; 100 14 2022; 66 2022; 535 1998; 43 2017; 9 2015 2016 2017 2016; 7 138 139 55 2017 2019 2015 2019; 29 58 3 9 2020; 8 2020 1998; 4 281 2020; 7 2017 2017 2017; 41 4 4 2013; 15 2014; 5 2021; 31 2020; 3 2021; 33 2005; 142 2020 2021 2012; 389 15 488 2013; 431 2020; 49 2019; 116 2020; 47 2018 2016; 90 3 2018 2014; 95 7 2022; 403 2006; 128 2022; 520 2014; 53 2018 2018 2019; 51 54 6 2017; 218 2014; 118 2021; 9 2022; 430 2022; 310 2021; 6 2019 2016 2020; 2 7 30 2021; 3 2018; 140 2007 2019 2019; 52 12 119 2022; 51 2020 2019 2018; 330 7 28 2008; 602 2022; 47 2019 2018; 29 8 2009; 131 2022; 439 2015; 8 2020 2013 2012; 12 703 59 2018 2018 2018 2018; 9 6 57 6 2022; 312 2022; 433 2022; 144 2021; 14 2021; 13 2019 2009 2020 2021; 141 48 396 23 2021; 12 2013; 38 2004; 93 2022 2020 2016 2009 2021 2019; 45 46 39 267 5 2017; 10 2017; 13 2017 2018; 56 11 2017 2018 2018; 2 43 8 2021; 291 1980; 5 2022; 58 2015 2003; 48 5 2020; 876 2004 2020 2019; 305 13 32 2009; 140 2019 2019; 31 29 2021; 297 2022; 306 2018 2021 2016; 8 9 6 2012; 5 2007; 46 2015 2018; 5 20 2018; 57 e_1_2_7_3_2 e_1_2_7_3_1 Nilges P. (e_1_2_7_120_1) 2013; 6 Du X. (e_1_2_7_158_1) 2022; 51 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_2 e_1_2_7_19_1 Hu E. (e_1_2_7_21_2) 2018; 11 e_1_2_7_60_1 e_1_2_7_191_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_165_3 e_1_2_7_165_2 e_1_2_7_116_3 e_1_2_7_116_2 e_1_2_7_116_1 e_1_2_7_94_1 Huang H. (e_1_2_7_72_1) 2020; 13 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_2 e_1_2_7_56_1 e_1_2_7_56_3 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_214_2 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_139_1 e_1_2_7_105_4 e_1_2_7_4_1 e_1_2_7_105_2 e_1_2_7_105_3 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_12_3 e_1_2_7_192_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_181_4 e_1_2_7_67_1 Yu Z.‐Y. (e_1_2_7_140_1) 2018; 11 e_1_2_7_181_2 e_1_2_7_181_3 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_166_2 e_1_2_7_203_1 e_1_2_7_166_1 Dresp S. (e_1_2_7_220_1) 2020; 13 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_2 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_170_3 e_1_2_7_170_2 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_170_4 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_1_3 e_1_2_7_106_2 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_2 e_1_2_7_13_3 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_43_2 e_1_2_7_89_1 e_1_2_7_182_1 Zhang L. (e_1_2_7_84_2) 2019; 12 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_167_3 e_1_2_7_167_2 Faber M. S. (e_1_2_7_39_2) 2014; 7 e_1_2_7_118_2 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 Li K. (e_1_2_7_111_3) 2018; 11 e_1_2_7_54_1 e_1_2_7_171_2 e_1_2_7_171_1 e_1_2_7_216_1 Stern L.‐A. (e_1_2_7_115_4) 2015; 8 e_1_2_7_171_3 e_1_2_7_194_1 Eerhart A. J. J. E. (e_1_2_7_48_1) 2012; 5 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_133_3 e_1_2_7_179_1 e_1_2_7_107_2 e_1_2_7_107_3 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_4 e_1_2_7_122_3 e_1_2_7_122_2 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_42_2 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_168_2 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_111_7 e_1_2_7_91_1 e_1_2_7_111_6 e_1_2_7_111_5 e_1_2_7_111_4 e_1_2_7_111_2 e_1_2_7_91_4 e_1_2_7_111_1 e_1_2_7_91_3 e_1_2_7_91_2 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_99_4 e_1_2_7_99_3 e_1_2_7_99_2 e_1_2_7_38_1 e_1_2_7_38_2 e_1_2_7_38_3 Lan R. (e_1_2_7_133_2) 2010; 3 e_1_2_7_134_1 e_1_2_7_134_2 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_100_2 e_1_2_7_15_3 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_146_1 Rossmeisl J. (e_1_2_7_83_1) 2012; 5 e_1_2_7_90_2 e_1_2_7_90_1 Yu L. (e_1_2_7_209_1) 2020; 13 e_1_2_7_112_1 e_1_2_7_90_3 e_1_2_7_52_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 Rees N. V. (e_1_2_7_169_1) 2011; 4 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_135_1 e_1_2_7_135_2 e_1_2_7_135_3 e_1_2_7_135_4 e_1_2_7_210_1 e_1_2_7_135_5 e_1_2_7_109_1 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_101_2 e_1_2_7_101_3 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_162_2 e_1_2_7_207_1 e_1_2_7_162_1 e_1_2_7_207_2 e_1_2_7_162_3 Hong W. (e_1_2_7_98_1) 2015; 8 e_1_2_7_147_1 e_1_2_7_8_4 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_136_1 e_1_2_7_136_2 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_5_4 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_5_3 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_6 e_1_2_7_114_5 e_1_2_7_114_4 e_1_2_7_114_3 e_1_2_7_114_2 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_50_1 e_1_2_7_96_4 e_1_2_7_50_3 e_1_2_7_96_3 Christopher K. (e_1_2_7_3_3) 2012; 5 e_1_2_7_96_2 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_35_3 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_35_4 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_198_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_126_3 e_1_2_7_126_2 e_1_2_7_126_1 e_1_2_7_6_2 e_1_2_7_103_1 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_2 e_1_2_7_10_3 e_1_2_7_84_3 e_1_2_7_190_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_3 e_1_2_7_115_2 e_1_2_7_115_1 e_1_2_7_95_1 Spurgeon J. M. (e_1_2_7_82_2) 2018; 11 e_1_2_7_95_3 e_1_2_7_22_2 e_1_2_7_95_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 Kumari S. (e_1_2_7_218_1) 2016; 9 e_1_2_7_138_1 |
References_xml | – volume: 9 start-page: 1725 year: 2016 publication-title: Environ Sci – volume: 1 start-page: 0003 year: 2017 publication-title: Nat. Rev. Chem. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – year: 2022 publication-title: Energy Environ. Mater. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 100 14 start-page: 410 130 year: 2012 2021 publication-title: Proc. IEEE ChemSusChem – volume: 140 start-page: 363 year: 2009 publication-title: Faraday Discuss. – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 26 start-page: 6510 year: 2014 publication-title: Adv. Mater. – volume: 9 start-page: 4159 year: 2021 publication-title: J. Mater. Chem. A – volume: 43 start-page: 3303 year: 1998 publication-title: Electrochim. Acta – volume: 1 start-page: 386 year: 2016 publication-title: ACS Energy Lett. – volume: 312 year: 2022 publication-title: Appl. Catal., B – volume: 2 43 8 start-page: 9316 1 year: 2017 2018 2018 publication-title: ChemistrySelect Int. J. Hydrogen Energy ACS Catal. – volume: 6 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 15 start-page: 6475 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 1004 year: 2018 publication-title: Nano Res. – volume: 9 start-page: 403 year: 2016 publication-title: ChemSusChem – volume: 9 year: 2022 publication-title: ChemElectroChem – volume: 6 start-page: 9596 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 16 start-page: 3778 year: 2014 publication-title: Green Chem. – volume: 876 year: 2020 publication-title: J. Electroanal. Chem. – volume: 47 start-page: 5766 year: 2022 publication-title: Int. J. Hydrogen Energy – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 58 3 9 start-page: 7145 5104 year: 2017 2019 2015 2019 publication-title: Adv. Mater. Angew. Chem., Int. Ed. J. Mater. Chem. A ACS Catal. – volume: 520 year: 2022 publication-title: J. Power Sources – volume: 51 54 6 start-page: 1571 5943 3214 year: 2018 2018 2019 publication-title: Acc. Chem. Res. Chem. Commun. ChemElectroChem – volume: 13 9 start-page: 3439 year: 2020 2022 publication-title: Environ. Sci. Adv. Sci. – volume: 54 start-page: 9394 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 332 year: 2018 publication-title: Nat. Catal. – volume: 912 year: 2022 publication-title: J. Alloys Compd. – volume: 53 60 58 year: 2017 2021 2019 publication-title: Chem. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 58 start-page: 6132 year: 2022 publication-title: Chem. Commun. – volume: 3 start-page: 2280 year: 2021 publication-title: Nanoscale Adv. – volume: 70 start-page: 258 year: 2022 publication-title: J. Energy Chem. – volume: 284 year: 2021 publication-title: Appl. Catal., B – volume: 13 start-page: 1483 year: 2020 publication-title: Energies – volume: 403 year: 2022 publication-title: Electrochim. Acta – volume: 12 start-page: 3585 year: 2020 publication-title: ChemCatChem – volume: 142 start-page: 18 year: 2005 publication-title: J. Power Sources – volume: 11 4 start-page: 8685 year: 2021 2021 publication-title: Adv. Energy Mater. ACS Appl. Energy Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2017 publication-title: Small – volume: 4 281 start-page: 2967 237 year: 2020 1998 publication-title: Sustainable Energy Fuels Science – volume: 9 start-page: 5664 year: 2021 publication-title: J. Mater. Chem. A – volume: 11 start-page: 1700 year: 2009 publication-title: Electrochem. Commun. – volume: 10 start-page: 4851 year: 2017 publication-title: ChemSusChem – volume: 2 start-page: 67 year: 2019 publication-title: Commun. Chem. – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 49 start-page: 3764 year: 2020 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 4990 year: 2020 publication-title: Environ. Sci. – volume: 310 year: 2022 publication-title: Appl. Catal., B – volume: 6 381 402 year: 2018 2020 2020 publication-title: J. Mater. Chem. A Chem. Eng. J. Chem. Eng. J. – volume: 3 start-page: 7560 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 525 year: 2021 publication-title: Inorg. Chim. Acta – volume: 4 42 start-page: 1329 709 year: 2016 2004 publication-title: Energy Technol. Soil Res. – volume: 6 start-page: 904 year: 2021 publication-title: Nat. Energy – volume: 7 57 start-page: 7777 172 year: 2019 2018 publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed. – volume: 11 11 start-page: 821 1536 year: 2018 2018 publication-title: ChemSusChem Environ. Sci. – volume: 105 start-page: 58 year: 2022 publication-title: J. Ind. Eng. Chem. – volume: 2 start-page: 8359 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 5 start-page: 4036 year: 2014 publication-title: Nat. Commun. – volume: 21 start-page: 6699 year: 2019 publication-title: Green Chem. – volume: 13 7 start-page: 3127 year: 2020 2019 publication-title: ChemSusChem ACS Sustainable Chem. Eng. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 1 8 8 start-page: 5533 244 144 2347 year: 2018 2015 2017 2015 publication-title: ACS Catal. ACS Cent. Sci. J. Phys. Chem. Lett. Environ. Sci. – volume: 2013 start-page: 5225 year: 2013 publication-title: Eur. J. Org. Chem. – volume: 72 start-page: 361 year: 2022 publication-title: J. Energy Chem. – volume: 291 year: 2021 publication-title: Appl. Catal., B – volume: 202 start-page: 197 year: 2013 publication-title: Catal. Today – volume: 297 year: 2021 publication-title: Appl. Catal., B – volume: 12 start-page: 2008 year: 2021 publication-title: Nat. Commun. – volume: 7 start-page: 4564 year: 2017 publication-title: ACS Catal. – volume: 21 start-page: 578 year: 2019 publication-title: Green Chem. – volume: 5 196 start-page: 3208 9579 year: 2017 2011 publication-title: J. Mater. Chem. A J. Power Sources – volume: 95 7 start-page: 197 3519 year: 2018 2014 publication-title: J. Chem. Educ. Environ. Sci. – volume: 4 start-page: 2710 year: 2013 publication-title: Chem. Sci. – volume: 10 38 start-page: 899 year: 2020 1997 publication-title: RSC Adv. Mater. Trans. – volume: 330 7 28 year: 2020 2019 2018 publication-title: Electrochim. Acta ACS Sustainable Chem. Eng. Adv. Funct. Mater. – volume: 5 start-page: 401 year: 1980 publication-title: Int. J. Hydrogen Energy – volume: 2 43 275 305 start-page: 759 341 47 year: 2012 2018 2015 2019 publication-title: ACS Catal. Int. J. Hydrogen Energy J. Power Sources Electrochim. Acta – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 128 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 5 20 start-page: 6529 5427 year: 2015 2018 publication-title: ACS Catal. Green Chem. – volume: 13 start-page: 890 year: 2011 publication-title: Electrochem. Commun. – volume: 4 start-page: 1255 year: 2011 publication-title: Environ Sci – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 100 year: 2022 publication-title: Nano Energy – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 116 start-page: 6624 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 147 year: 2022 publication-title: Nat. Commun. – volume: 602 start-page: 3424 year: 2008 publication-title: Surf. Sci. – volume: 439 year: 2022 publication-title: Chem. Eng. J. – volume: 144 start-page: 9254 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 32 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 3978 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 8 28 year: 2018 2018 publication-title: Adv. Energy Mater. Adv. Funct. Mater. – volume: 12 start-page: 4679 year: 2021 publication-title: Nat. Commun. – volume: 144 start-page: 7720 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 72 start-page: 88 year: 2022 publication-title: J. Energy Chem. – volume: 51 start-page: 4909 year: 2022 publication-title: John Dalton Prog. Sci., Pap. Conf. Hist. Sci. – volume: 141 48 396 23 start-page: 890 4228 year: 2019 2009 2020 2021 publication-title: J. Am. Chem. Soc. Ind. Eng. Chem. Res. Chem. Eng. J. Green Chem. – volume: 7 start-page: 86 year: 2020 publication-title: ChemElectroChem – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 7 9 start-page: 163 3376 year: 2020 2018 publication-title: ChemElectroChem Nat. Commun. – volume: 29 8 year: 2019 2018 publication-title: Adv. Funct. Mater. Adv. Energy Mater. – volume: 9 start-page: 962 year: 2016 publication-title: ChemSusChem – volume: 408 10 12 start-page: 5958 1 176 year: 2010 2019 1967 publication-title: Sci. Total Environ. Nat. Commun. Limnol. Oceanogr. – volume: 8 start-page: 2910 year: 2015 publication-title: Environ. Sci. – volume: 8 9 6 start-page: 7179 1970 6704 year: 2018 2021 2016 publication-title: ACS Catal. ACS Sustainable Chem. Eng. ACS Catal. – volume: 9 start-page: 1683 year: 2017 publication-title: ChemCatChem – volume: 11 22 19 start-page: 2547 843 3023 year: 2018 2020 2017 publication-title: ChemSusChem Green Chem. Green Chem. – volume: 131 45 start-page: 2615 year: 2009 2020 publication-title: J. Am. Chem. Soc. Int. J. Hydrogen Energy – volume: 4 29 year: 2018 2017 publication-title: Sci. Adv. Adv. Mater. – volume: 12 start-page: 4426 year: 2020 publication-title: Nanoscale – volume: 10 start-page: 6741 year: 2020 publication-title: ACS Catal. – volume: 66 start-page: 483 year: 2022 publication-title: J. Energy Chem. – volume: 12 4 4 4 start-page: 136 473 194 year: 2022 2021 2021 2021 publication-title: Adv. Energy Mater. Electrochem. Eng. Energy Electrochem. Eng. Energy Electrochem. Eng. Energy – volume: 408 year: 2021 publication-title: Chem. Eng. J. – volume: 8 start-page: 1864 year: 2018 publication-title: ACS Catal. – volume: 5 start-page: 8335 year: 2012 publication-title: Environ. Sci. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 535 year: 2022 publication-title: J. Power Sources – volume: 29 start-page: 1503 year: 1984 publication-title: Electrochim. Acta – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 31 245 start-page: 4491 555 year: 2016 2019 2019 publication-title: ACS Catal. Adv. Mater. Appl. Catal., B – volume: 5 start-page: 66 year: 2022 publication-title: Nat. Catal. – volume: 83 start-page: 11 year: 2017 publication-title: Electrochem. Commun. – volume: 382 379 10 start-page: 237 5335 year: 2020 2020 2019 publication-title: J. Catal. Chem. Eng. J. Nat. Commun. – volume: 45 46 39 267 5 start-page: 1011 1137 2228 year: 2020 2016 2009 2021 2019 publication-title: Int. J. Hydrogen Energy J. Appl. Elctrochem. J. Appl. Elctrochem. Chemosphere Chem – volume: 8 start-page: 526 year: 2018 publication-title: ACS Catal. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 12 703 59 start-page: 56 284 year: 2020 2013 2012 publication-title: ACS Appl. Mater. Interfaces J. Electroanal. Chem. Electrochim. Acta – volume: 6 start-page: 7621 year: 2016 publication-title: ACS Catal. – volume: 113 start-page: 170 year: 2022 publication-title: J. Ind. Eng. Chem. – volume: 345 4 7 135 start-page: 1326 637 year: 2014 2018 2016 2013 publication-title: Science Chem Nat. Commun. J. Am. Chem. Soc. – volume: 6 start-page: 2925 year: 2013 publication-title: Environ. Sci. – year: 2022 publication-title: Green Energy Environ. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 7 138 139 55 start-page: 328 9913 year: 2015 2016 2017 2016 publication-title: Nat. Chem. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 11 112 19 176‐177 start-page: 390 2242 233 year: 2009 2008 2013 2015 publication-title: Electrochem. Commun. J. Phys. Chem. C Chemistry Appl. Catal., B – volume: 18 year: 2022 publication-title: Mater. Today Nano – volume: 51 108 start-page: 2654 year: 2012 2004 publication-title: Angew. Chem., Int. Ed. J. Phys. Chem. B – volume: 40 44 5 start-page: 6371 6640 year: 2015 2019 2012 publication-title: Int. J. Hydrogen Energy Int. J. Hydrogen Energy Environ. Sci. – volume: 3 start-page: 7619 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 277 year: 2020 publication-title: Appl. Catal., B. – volume: 9 start-page: 3643 year: 2022 publication-title: Inorg. Chem. Front. – volume: 81 start-page: 1690 year: 2018 publication-title: Renewable Sustainable Energy Rev. – volume: 52 12 119 start-page: 5512 492 7610 year: 2007 2019 2019 publication-title: Electrochim. Acta Environ. Sci. Chem. Rev. – volume: 11 start-page: 1890 year: 2018 publication-title: Environ. Sci. – volume: 431 start-page: 60 year: 2013 publication-title: Colloids Surf., A – volume: 633 start-page: 159 year: 2009 publication-title: J. Electroanal. Chem. – volume: 453 year: 2020 publication-title: J. Power Sources – volume: 9 6 57 6 start-page: 4365 7649 year: 2018 2018 2018 2018 publication-title: Nat. Commun. J. Mater. Chem. A Angew. Chem., Int. Ed. J. Mater. Chem. A – volume: 31 29 year: 2019 2019 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 389 15 488 start-page: 1408 294 year: 2020 2021 2012 publication-title: Chem. Eng. J. Front. Chem. Sci. Eng. Nature – volume: 13 start-page: 1725 year: 2020 publication-title: Environ Sci – volume: 7 81 start-page: 8117 1045 year: 2019 2016 publication-title: J. Mater. Chem. A ChemPlusChem – volume: 58 start-page: 1311 year: 2015 publication-title: Top. Catal. – volume: 8 5 9 start-page: 367 74 year: 2018 2020 2021 publication-title: Adv. Energy Mater. Nat. Energy J. Mater. Chem. A – volume: 57 start-page: 1616 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 6 319 44 242 start-page: 6870 312 872 year: 2016 2019 2019 2013 publication-title: Catal. Sci. Technol. Electrochim. Acta Int. J. Hydrogen Energy J. Power Sources – volume: 53 5 48 start-page: 8824 5851 1474 year: 2014 2015 2015 publication-title: Angew. Chem., Int. Ed. ACS Catal. Acc. Chem. Res. – volume: 56 11 start-page: 3897 872 year: 2017 2018 publication-title: Angew. Chem., Int. Ed. Environ. Sci. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 218 start-page: 470 year: 2017 publication-title: Appl. Catal., B – volume: 49 start-page: 4813 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 24 start-page: 4870 year: 2022 publication-title: Green Chem. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 48 5 start-page: 1403 1329 year: 2015 2003 publication-title: Acc. Chem. Res. Phys. Chem. Chem. Phys. – volume: 38 start-page: 4901 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 14 start-page: 5499 year: 2021 publication-title: ChemSusChem – volume: 306 year: 2022 publication-title: Appl. Catal., B – volume: 3 start-page: 1176 year: 2011 publication-title: ChemCatChem – volume: 90 3 start-page: 4702 169 year: 2018 2016 publication-title: Anal. Chem. Mater. Horiz. – volume: 28 57 start-page: 698 year: 2018 2018 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 34 360 start-page: 959 year: 2022 2020 publication-title: Chem. Mater. Electrochim. Acta – volume: 417 year: 2021 publication-title: Chem. Eng. J. – volume: 3 start-page: 491 year: 2017 publication-title: ChemNanoMat – volume: 7 59 58 57 11 8 start-page: 1798 1138 year: 2019 2020 2019 2018 2020 2020 publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chem. Sci. J. Mater. Chem. A – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 41 4 4 start-page: 4754 420 481 year: 2017 2017 2017 publication-title: New J. Chem. Inorg. Chem. Front. ChemElectroChem – volume: 47 start-page: 234 year: 2020 publication-title: J. Energy Chem. – volume: 384 68 121 start-page: 1 70 301 year: 2020 1964 2002 publication-title: J. Catal. J. Phys. Chem. Faraday Discuss. – volume: 5 start-page: 6407 year: 2012 publication-title: Environ Sci – volume: 11 start-page: 265 year: 2020 publication-title: Nat. Commun. – volume: 2 7 30 start-page: 495 year: 2019 2016 2020 publication-title: Nat. Catal. Nat. Commun. Adv. Funct. Mater. – volume: 46 start-page: 306 year: 2007 publication-title: Top. Catal. – volume: 829 3 10 start-page: 81 438 9308 year: 2018 2010 2022 publication-title: J. Electroanal. Chem. Environ. Sci. J. Mater. Chem. A – volume: 47 start-page: 172 year: 2018 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 1104 year: 2022 publication-title: Chem. Commun. – volume: 305 13 32 start-page: 972 3357 78 year: 2004 2020 2019 publication-title: Science ChemSusChem J. Energy Chem. – volume: 9 361 11 7 48 14 55 start-page: 4678 238 1232 3181 6812 year: 2019 2018 2018 2019 2019 2020 2019 publication-title: Catal. Sci. Technol. J. Catal. Environ. Sci. J. Mater. Chem. A Chem. Soc. Rev. ACS Nano Chem. Commun. – volume: 390 year: 2021 publication-title: Electrochim. Acta – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 3 start-page: 2996 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 136 start-page: 3937 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 56 9 414 9 start-page: 842 6182 year: 2017 2019 2021 2022 publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater. Chem. Eng. J. Inorg. Chem. Front. – volume: 15 start-page: 1916 year: 2022 publication-title: Nano Res. – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 195 start-page: 144 year: 2012 publication-title: Catal. Today – volume: 446 year: 2022 publication-title: Chem. Eng. J. – volume: 245 start-page: 927 year: 2014 publication-title: J. Power Sources – ident: e_1_2_7_60_1 doi: 10.1016/j.jpowsour.2013.07.028 – ident: e_1_2_7_43_1 doi: 10.1002/anie.201205314 – ident: e_1_2_7_63_1 doi: 10.1002/eem2.12409 – ident: e_1_2_7_110_1 doi: 10.1039/C9GC02880C – ident: e_1_2_7_42_2 doi: 10.1016/j.electacta.2020.136954 – ident: e_1_2_7_119_1 doi: 10.1021/acscatal.6b01838 – ident: e_1_2_7_13_2 doi: 10.1038/s41560-020-0550-8 – ident: e_1_2_7_90_1 doi: 10.1038/s41929-019-0279-6 – ident: e_1_2_7_176_1 doi: 10.1039/C9NR09959J – ident: e_1_2_7_13_3 doi: 10.1039/D0TA08709B – ident: e_1_2_7_144_1 doi: 10.1016/j.cej.2022.134497 – ident: e_1_2_7_213_1 doi: 10.1002/anie.200907128 – ident: e_1_2_7_127_1 doi: 10.1016/j.jechem.2020.01.035 – ident: e_1_2_7_5_2 doi: 10.1007/s41918-020-00084-1 – ident: e_1_2_7_7_2 doi: 10.1002/cplu.201600029 – ident: e_1_2_7_165_1 doi: 10.1039/C8TA05064C – ident: e_1_2_7_97_1 doi: 10.1016/j.elecom.2011.05.031 – ident: e_1_2_7_133_3 doi: 10.1039/D2TA00120A – ident: e_1_2_7_12_3 doi: 10.1002/celc.201900675 – ident: e_1_2_7_123_1 doi: 10.1002/celc.201901592 – ident: e_1_2_7_94_1 doi: 10.1002/adfm.201908235 – ident: e_1_2_7_208_1 doi: 10.1016/0360-3199(80)90021-X – ident: e_1_2_7_214_2 doi: 10.1016/j.ijhydene.2020.09.058 – ident: e_1_2_7_70_1 doi: 10.1021/acscatal.7b00876 – ident: e_1_2_7_160_1 doi: 10.1016/j.cej.2020.128067 – ident: e_1_2_7_197_1 doi: 10.1016/j.mtnano.2022.100216 – ident: e_1_2_7_12_2 doi: 10.1039/C8CC01830H – ident: e_1_2_7_18_2 doi: 10.1126/science.281.5374.237 – volume: 13 start-page: 3439 year: 2020 ident: e_1_2_7_209_1 publication-title: Environ. Sci. – ident: e_1_2_7_153_1 doi: 10.1016/j.jiec.2022.05.043 – ident: e_1_2_7_170_1 doi: 10.1002/anie.201608899 – ident: e_1_2_7_183_1 doi: 10.1016/j.colsurfa.2013.04.019 – ident: e_1_2_7_156_1 doi: 10.1039/D0TA09473K – ident: e_1_2_7_105_4 doi: 10.1039/D1GC00914A – ident: e_1_2_7_152_1 doi: 10.1016/j.apcatb.2020.119740 – ident: e_1_2_7_100_1 doi: 10.1021/ar500426g – ident: e_1_2_7_35_2 doi: 10.1021/jacs.6b07127 – ident: e_1_2_7_113_1 doi: 10.1039/C7CS00529F – ident: e_1_2_7_164_1 doi: 10.1021/acsaem.0c00122 – ident: e_1_2_7_187_1 doi: 10.1016/S0013-4686(98)00075-9 – ident: e_1_2_7_71_1 doi: 10.1039/C8GC03451F – ident: e_1_2_7_56_2 doi: 10.1021/j100783a013 – ident: e_1_2_7_99_2 doi: 10.1016/j.ijhydene.2018.10.132 – ident: e_1_2_7_182_1 doi: 10.1016/j.jelechem.2009.05.008 – ident: e_1_2_7_10_3 doi: 10.1016/j.jechem.2018.07.006 – ident: e_1_2_7_1_3 doi: 10.1038/nature11475 – ident: e_1_2_7_206_1 doi: 10.1073/pnas.1900556116 – ident: e_1_2_7_17_1 doi: 10.1038/s42004-019-0169-5 – ident: e_1_2_7_22_2 doi: 10.1002/anie.201710877 – ident: e_1_2_7_35_3 doi: 10.1021/jacs.7b08657 – volume: 5 start-page: 8335 year: 2012 ident: e_1_2_7_83_1 publication-title: Environ. Sci. – ident: e_1_2_7_219_1 doi: 10.1021/acssuschemeng.8b01998 – ident: e_1_2_7_111_4 doi: 10.1039/C9TA10267A – ident: e_1_2_7_54_1 doi: 10.1021/ja0644172 – ident: e_1_2_7_217_1 doi: 10.1016/j.rser.2017.05.258 – ident: e_1_2_7_9_1 doi: 10.1016/j.ijhydene.2013.01.151 – ident: e_1_2_7_142_1 doi: 10.1016/j.jechem.2022.04.045 – ident: e_1_2_7_16_1 doi: 10.1039/C8TA03741H – ident: e_1_2_7_192_1 doi: 10.1016/j.apcatb.2022.121338 – ident: e_1_2_7_46_1 doi: 10.1039/c3cp44088e – ident: e_1_2_7_31_1 doi: 10.1016/j.cej.2020.125217 – ident: e_1_2_7_209_2 doi: 10.1002/advs.202200146 – volume: 6 start-page: 2925 year: 2013 ident: e_1_2_7_120_1 publication-title: Environ. Sci. – ident: e_1_2_7_68_1 doi: 10.1021/ja412429f – ident: e_1_2_7_184_1 doi: 10.1038/s41467-021-25048-x – ident: e_1_2_7_211_1 doi: 10.1021/acscatal.7b03142 – ident: e_1_2_7_37_1 doi: 10.1016/j.jiec.2021.09.028 – ident: e_1_2_7_128_1 doi: 10.1016/j.jpowsour.2004.09.043 – volume: 3 start-page: 438 year: 2010 ident: e_1_2_7_133_2 publication-title: Environ. Sci. – ident: e_1_2_7_99_3 doi: 10.1016/j.jpowsour.2014.11.034 – ident: e_1_2_7_38_3 doi: 10.1021/acscatal.7b03177 – ident: e_1_2_7_185_1 doi: 10.1038/s41467-021-22250-9 – ident: e_1_2_7_205_1 doi: 10.1002/adfm.202201127 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.202200409 – ident: e_1_2_7_126_3 doi: 10.1021/acs.accounts.5b00068 – volume: 12 start-page: 492 year: 2019 ident: e_1_2_7_84_2 publication-title: Environ. Sci. – ident: e_1_2_7_7_1 doi: 10.1039/C9TA01903K – ident: e_1_2_7_194_1 doi: 10.1039/D1TA05703K – ident: e_1_2_7_148_1 doi: 10.1007/s12274-021-3810-4 – ident: e_1_2_7_135_2 doi: 10.1007/s10800-016-0993-6 – ident: e_1_2_7_101_3 doi: 10.1016/j.electacta.2011.10.091 – ident: e_1_2_7_67_1 doi: 10.1016/j.electacta.2021.139714 – ident: e_1_2_7_90_2 doi: 10.1038/ncomms11850 – ident: e_1_2_7_101_2 doi: 10.1016/j.jelechem.2013.05.021 – ident: e_1_2_7_45_1 doi: 10.1021/acscatal.0c01498 – ident: e_1_2_7_50_1 doi: 10.1016/j.scitotenv.2010.08.057 – ident: e_1_2_7_56_3 doi: 10.1039/b110908c – ident: e_1_2_7_149_1 doi: 10.1016/j.jechem.2022.02.023 – ident: e_1_2_7_116_2 doi: 10.1039/C9GC03698A – ident: e_1_2_7_162_1 doi: 10.1039/C7CC06378D – ident: e_1_2_7_181_1 doi: 10.1038/s41467-018-06815-9 – ident: e_1_2_7_64_1 doi: 10.1016/j.ica.2021.120488 – ident: e_1_2_7_96_4 doi: 10.1021/acscatal.9b00190 – ident: e_1_2_7_171_1 doi: 10.1039/C7NJ00326A – ident: e_1_2_7_99_1 doi: 10.1021/cs200599g – ident: e_1_2_7_111_1 doi: 10.1039/C9CY01085H – ident: e_1_2_7_91_1 doi: 10.1039/C6CY00720A – ident: e_1_2_7_138_1 doi: 10.1021/jp5052529 – ident: e_1_2_7_18_1 doi: 10.1039/D0SE00222D – ident: e_1_2_7_134_2 doi: 10.1071/SR04028 – ident: e_1_2_7_69_1 doi: 10.1021/acsaem.0c01008 – ident: e_1_2_7_50_3 doi: 10.4319/lo.1967.12.1.0176 – ident: e_1_2_7_90_3 doi: 10.1002/adfm.202004310 – ident: e_1_2_7_24_1 doi: 10.1002/adfm.201900315 – ident: e_1_2_7_87_1 doi: 10.1002/adfm.201910309 – ident: e_1_2_7_141_1 doi: 10.1016/j.jechem.2021.08.042 – ident: e_1_2_7_53_1 doi: 10.1002/anie.201503917 – ident: e_1_2_7_147_1 doi: 10.1016/j.gee.2022.05.001 – ident: e_1_2_7_101_1 doi: 10.1021/acsami.9b22378 – ident: e_1_2_7_91_4 doi: 10.1016/j.jpowsour.2013.06.068 – ident: e_1_2_7_204_1 doi: 10.1016/j.jechem.2022.04.004 – ident: e_1_2_7_135_5 doi: 10.1016/j.chempr.2019.06.014 – ident: e_1_2_7_6_2 doi: 10.1002/cssc.202002103 – ident: e_1_2_7_23_1 doi: 10.1002/aenm.201901503 – ident: e_1_2_7_82_1 doi: 10.1002/cssc.201702075 – ident: e_1_2_7_114_3 doi: 10.1002/anie.201908722 – ident: e_1_2_7_114_4 doi: 10.1002/anie.201806298 – ident: e_1_2_7_22_1 doi: 10.1039/C9TA00878K – ident: e_1_2_7_159_1 doi: 10.1002/smll.202103326 – volume: 13 start-page: 4990 year: 2020 ident: e_1_2_7_72_1 publication-title: Environ. Sci. – ident: e_1_2_7_106_2 doi: 10.1039/C8GC02680G – ident: e_1_2_7_212_1 doi: 10.1002/anie.201406112 – ident: e_1_2_7_93_1 doi: 10.1002/cctc.201100023 – ident: e_1_2_7_115_1 doi: 10.1021/acscatal.8b01017 – ident: e_1_2_7_122_1 doi: 10.1016/j.elecom.2008.11.031 – ident: e_1_2_7_139_1 doi: 10.1016/j.apcatb.2022.121389 – ident: e_1_2_7_177_1 doi: 10.1039/D0NR02196B – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201502095 – ident: e_1_2_7_165_3 doi: 10.1016/j.cej.2020.126192 – ident: e_1_2_7_95_3 doi: 10.1016/j.apcatb.2019.01.022 – ident: e_1_2_7_111_6 doi: 10.1021/acsnano.0c00581 – ident: e_1_2_7_171_3 doi: 10.1002/celc.201600759 – ident: e_1_2_7_122_4 doi: 10.1016/j.apcatb.2015.03.059 – ident: e_1_2_7_58_1 doi: 10.1002/cctc.202000392 – ident: e_1_2_7_77_1 doi: 10.1021/acssuschemeng.8b02698 – ident: e_1_2_7_168_1 doi: 10.1002/aenm.201801775 – volume: 11 start-page: 872 year: 2018 ident: e_1_2_7_21_2 publication-title: Environ. Sci. – ident: e_1_2_7_167_1 doi: 10.1016/j.electacta.2019.135211 – ident: e_1_2_7_143_1 doi: 10.1016/j.jallcom.2022.165234 – volume: 11 start-page: 1536 year: 2018 ident: e_1_2_7_82_2 publication-title: Environ. Sci. – ident: e_1_2_7_57_1 doi: 10.1002/cctc.201601325 – ident: e_1_2_7_29_1 doi: 10.1016/j.jpowsour.2022.231461 – ident: e_1_2_7_99_4 doi: 10.1016/j.electacta.2019.03.018 – ident: e_1_2_7_112_1 doi: 10.1016/j.cattod.2012.05.008 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201800338 – ident: e_1_2_7_6_1 doi: 10.1109/JPROC.2011.2156750 – ident: e_1_2_7_162_3 doi: 10.1002/anie.201909832 – ident: e_1_2_7_85_1 doi: 10.1103/PhysRevLett.93.156801 – ident: e_1_2_7_96_1 doi: 10.1002/adma.201603374 – ident: e_1_2_7_10_1 doi: 10.1126/science.1103197 – ident: e_1_2_7_78_1 doi: 10.1016/j.elecom.2017.08.013 – ident: e_1_2_7_91_2 doi: 10.1016/j.electacta.2019.06.151 – ident: e_1_2_7_170_2 doi: 10.1002/aenm.201900390 – ident: e_1_2_7_121_1 doi: 10.1007/s11244-015-0499-1 – ident: e_1_2_7_130_1 doi: 10.1016/j.jpowsour.2020.227872 – ident: e_1_2_7_36_1 doi: 10.1002/ejoc.201300315 – ident: e_1_2_7_84_1 doi: 10.1016/j.electacta.2007.02.041 – ident: e_1_2_7_10_2 doi: 10.1002/cssc.202000416 – ident: e_1_2_7_20_2 doi: 10.1002/adfm.201904020 – ident: e_1_2_7_76_1 doi: 10.1002/cnma.201700076 – ident: e_1_2_7_178_1 doi: 10.1039/D0TA08078K – ident: e_1_2_7_135_3 doi: 10.1007/s10800-008-9771-4 – ident: e_1_2_7_104_1 doi: 10.1038/s41467-021-27806-3 – ident: e_1_2_7_136_2 doi: 10.1016/j.jpowsour.2011.06.079 – volume: 7 start-page: 3519 year: 2014 ident: e_1_2_7_39_2 publication-title: Environ. Sci. – ident: e_1_2_7_47_1 doi: 10.1038/s41929-018-0062-0 – ident: e_1_2_7_111_7 doi: 10.1039/C9CC06646B – ident: e_1_2_7_19_1 doi: 10.1126/sciadv.aap7970 – ident: e_1_2_7_103_1 doi: 10.1039/C9TA03924D – ident: e_1_2_7_107_1 doi: 10.1021/acscatal.8b01697 – ident: e_1_2_7_111_2 doi: 10.1016/j.jcat.2018.03.010 – ident: e_1_2_7_96_3 doi: 10.1039/C5TA00076A – ident: e_1_2_7_14_2 doi: 10.1021/acsaem.1c01932 – ident: e_1_2_7_1_1 doi: 10.1016/j.cej.2020.124408 – ident: e_1_2_7_114_5 doi: 10.1039/D0SC00136H – ident: e_1_2_7_135_4 doi: 10.1016/j.chemosphere.2020.129206 – volume: 13 start-page: 1725 year: 2020 ident: e_1_2_7_220_1 publication-title: Environ Sci – ident: e_1_2_7_21_1 doi: 10.1002/anie.201612635 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201805127 – ident: e_1_2_7_155_1 doi: 10.1016/j.cej.2021.133100 – ident: e_1_2_7_133_1 doi: 10.1016/j.jelechem.2018.10.007 – ident: e_1_2_7_38_2 doi: 10.1016/j.ijhydene.2018.03.221 – ident: e_1_2_7_81_1 doi: 10.1002/aenm.201902535 – ident: e_1_2_7_216_1 doi: 10.1039/D2CC00696K – ident: e_1_2_7_171_2 doi: 10.1039/C6QI00384B – ident: e_1_2_7_24_2 doi: 10.1002/aenm.201701592 – ident: e_1_2_7_80_1 doi: 10.1016/j.apcatb.2020.119178 – ident: e_1_2_7_135_1 doi: 10.1016/j.ijhydene.2020.05.279 – ident: e_1_2_7_168_2 doi: 10.1002/adfm.201704447 – ident: e_1_2_7_186_1 doi: 10.1002/anie.202108992 – ident: e_1_2_7_15_3 doi: 10.1038/s41467-019-13375-z – ident: e_1_2_7_118_1 doi: 10.1002/cssc.202000453 – volume: 11 start-page: 1890 year: 2018 ident: e_1_2_7_140_1 publication-title: Environ. Sci. – volume: 51 start-page: 4909 year: 2022 ident: e_1_2_7_158_1 publication-title: John Dalton Prog. Sci., Pap. Conf. Hist. Sci. – ident: e_1_2_7_174_1 doi: 10.1039/D1NA00043H – ident: e_1_2_7_151_1 doi: 10.1016/j.cej.2020.127308 – ident: e_1_2_7_132_1 doi: 10.1002/cssc.201501046 – ident: e_1_2_7_157_1 doi: 10.1039/D2QI00583B – ident: e_1_2_7_191_1 doi: 10.1016/j.cej.2022.136987 – ident: e_1_2_7_40_1 doi: 10.1016/j.susc.2008.08.011 – ident: e_1_2_7_89_1 doi: 10.1038/ncomms5036 – ident: e_1_2_7_59_1 doi: 10.1002/adfm.201909610 – ident: e_1_2_7_95_2 doi: 10.1002/adma.201804763 – ident: e_1_2_7_11_2 doi: 10.1039/C6MH00016A – volume: 8 start-page: 2347 year: 2015 ident: e_1_2_7_115_4 publication-title: Environ. Sci. – volume: 11 start-page: 1232 year: 2018 ident: e_1_2_7_111_3 publication-title: Environ. Sci. – ident: e_1_2_7_106_1 doi: 10.1021/acscatal.5b01491 – ident: e_1_2_7_166_2 doi: 10.1038/s41467-018-05878-y – ident: e_1_2_7_137_1 doi: 10.1016/j.apcatb.2021.120462 – ident: e_1_2_7_198_1 doi: 10.1039/D1CC05745F – ident: e_1_2_7_170_3 doi: 10.1016/j.cej.2021.128818 – ident: e_1_2_7_15_2 doi: 10.1016/j.cej.2019.122289 – ident: e_1_2_7_11_1 doi: 10.1021/acs.analchem.7b05299 – ident: e_1_2_7_203_1 doi: 10.1016/j.elecom.2009.06.022 – ident: e_1_2_7_25_2 doi: 10.1002/anie.201710460 – ident: e_1_2_7_15_1 doi: 10.1016/j.jcat.2019.12.019 – ident: e_1_2_7_75_1 doi: 10.1021/acsenergylett.6b00214 – ident: e_1_2_7_188_1 doi: 10.1021/acsaem.0c01040 – ident: e_1_2_7_32_1 doi: 10.1002/anie.202108563 – ident: e_1_2_7_84_3 doi: 10.1021/acs.chemrev.8b00705 – ident: e_1_2_7_170_4 doi: 10.1039/D2QI01699K – ident: e_1_2_7_180_1 doi: 10.1021/acsami.1c09503 – ident: e_1_2_7_175_1 doi: 10.1016/j.jelechem.2020.114740 – ident: e_1_2_7_181_3 doi: 10.1002/anie.201803543 – ident: e_1_2_7_118_2 doi: 10.1021/acssuschemeng.9b00203 – ident: e_1_2_7_172_1 doi: 10.1016/j.apcatb.2022.121132 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201807898 – ident: e_1_2_7_95_1 doi: 10.1021/acscatal.6b00709 – ident: e_1_2_7_14_1 doi: 10.1002/aenm.202101180 – ident: e_1_2_7_35_1 doi: 10.1038/nchem.2194 – ident: e_1_2_7_173_1 doi: 10.1016/j.ijhydene.2021.11.235 – ident: e_1_2_7_210_1 doi: 10.1016/0013-4686(84)85004-5 – ident: e_1_2_7_201_1 doi: 10.1002/cssc.202101800 – ident: e_1_2_7_214_1 doi: 10.1021/ja807769r – ident: e_1_2_7_65_1 doi: 10.1002/celc.202200092 – ident: e_1_2_7_105_1 doi: 10.1021/jacs.8b09917 – ident: e_1_2_7_105_2 doi: 10.1021/ie901012g – ident: e_1_2_7_34_1 doi: 10.1039/D0CS00130A – ident: e_1_2_7_207_2 doi: 10.2320/matertrans1989.38.899 – ident: e_1_2_7_52_1 doi: 10.1021/jp209506d – ident: e_1_2_7_165_2 doi: 10.1016/j.cej.2019.122603 – ident: e_1_2_7_5_4 doi: 10.1007/s41918-020-00087-y – ident: e_1_2_7_116_1 doi: 10.1002/cssc.201800695 – ident: e_1_2_7_200_1 doi: 10.1016/j.electacta.2021.138833 – ident: e_1_2_7_33_1 doi: 10.1002/eem2.12318 – ident: e_1_2_7_92_1 doi: 10.3390/en13061483 – ident: e_1_2_7_8_2 doi: 10.1016/j.chempr.2017.12.019 – ident: e_1_2_7_8_1 doi: 10.1126/science.1257443 – ident: e_1_2_7_43_2 doi: 10.1021/jp037215q – ident: e_1_2_7_162_2 doi: 10.1002/anie.202100610 – ident: e_1_2_7_109_1 doi: 10.1038/s41929-021-00721-y – ident: e_1_2_7_107_3 doi: 10.1021/acscatal.6b01861 – ident: e_1_2_7_163_1 doi: 10.1038/s41560-021-00899-2 – ident: e_1_2_7_3_2 doi: 10.1016/j.ijhydene.2019.01.168 – volume: 5 start-page: 6640 year: 2012 ident: e_1_2_7_3_3 publication-title: Environ. Sci. – ident: e_1_2_7_41_1 doi: 10.1002/anie.202107886 – ident: e_1_2_7_115_3 doi: 10.1021/acs.jpclett.6b02249 – volume: 5 start-page: 6407 year: 2012 ident: e_1_2_7_48_1 publication-title: Environ Sci – ident: e_1_2_7_129_1 doi: 10.1002/anie.201807717 – ident: e_1_2_7_181_2 doi: 10.1039/C8TA06827E – ident: e_1_2_7_30_1 doi: 10.1002/adfm.202103673 – ident: e_1_2_7_73_1 doi: 10.1039/D2GC00989G – ident: e_1_2_7_4_1 doi: 10.1038/s41570-016-0003 – ident: e_1_2_7_167_3 doi: 10.1002/adfm.201706847 – ident: e_1_2_7_5_3 doi: 10.1007/s41918-020-00086-z – ident: e_1_2_7_161_1 doi: 10.1002/adfm.202000556 – ident: e_1_2_7_199_1 doi: 10.1021/jacs.8b05382 – ident: e_1_2_7_28_1 doi: 10.1016/j.nanoen.2022.107467 – ident: e_1_2_7_86_1 doi: 10.1039/B804591G – ident: e_1_2_7_74_1 doi: 10.1002/cssc.201702119 – ident: e_1_2_7_116_3 doi: 10.1039/C7GC01012E – ident: e_1_2_7_154_1 doi: 10.1021/acsami.1c18593 – ident: e_1_2_7_50_2 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_7_125_1 doi: 10.1002/adma.202104791 – ident: e_1_2_7_62_1 doi: 10.1021/acscatal.7b03319 – ident: e_1_2_7_38_1 doi: 10.1002/slct.201702071 – ident: e_1_2_7_117_1 doi: 10.1021/acsaem.9b01852 – ident: e_1_2_7_42_1 doi: 10.1021/acs.chemmater.1c02535 – ident: e_1_2_7_61_1 doi: 10.1002/smll.201602970 – ident: e_1_2_7_100_2 doi: 10.1039/b212047j – ident: e_1_2_7_105_3 doi: 10.1016/j.cej.2020.125303 – volume: 9 start-page: 1725 year: 2016 ident: e_1_2_7_218_1 publication-title: Environ Sci – ident: e_1_2_7_96_2 doi: 10.1002/anie.201908586 – ident: e_1_2_7_122_3 doi: 10.1002/chem.201203378 – ident: e_1_2_7_107_2 doi: 10.1021/acssuschemeng.0c07480 – ident: e_1_2_7_111_5 doi: 10.1039/C8CS00671G – ident: e_1_2_7_114_1 doi: 10.1039/C9TA03580J – volume: 8 start-page: 2910 year: 2015 ident: e_1_2_7_98_1 publication-title: Environ. Sci. – ident: e_1_2_7_55_1 doi: 10.1007/s11244-007-9004-9 – ident: e_1_2_7_195_1 doi: 10.1002/adfm.202201081 – volume: 4 start-page: 1255 year: 2011 ident: e_1_2_7_169_1 publication-title: Environ Sci – ident: e_1_2_7_114_2 doi: 10.1002/anie.202005489 – ident: e_1_2_7_166_1 doi: 10.1002/celc.201901423 – ident: e_1_2_7_167_2 doi: 10.1021/acssuschemeng.9b03275 – ident: e_1_2_7_126_2 doi: 10.1021/acscatal.5b01479 – ident: e_1_2_7_51_1 doi: 10.1039/c3sc50205h – ident: e_1_2_7_88_1 doi: 10.1016/j.cattod.2012.08.013 – ident: e_1_2_7_179_1 doi: 10.1002/adma.201401969 – ident: e_1_2_7_150_1 doi: 10.1016/j.cej.2022.135743 – ident: e_1_2_7_181_4 doi: 10.1039/C8TA06361C – ident: e_1_2_7_49_1 doi: 10.1002/cssc.201501581 – ident: e_1_2_7_102_1 doi: 10.1021/acsami.9b08441 – ident: e_1_2_7_8_4 doi: 10.1021/ja4071893 – ident: e_1_2_7_215_1 doi: 10.1002/anie.201712121 – ident: e_1_2_7_1_2 doi: 10.1007/s11705-021-2102-6 – ident: e_1_2_7_202_1 doi: 10.1039/D0TA08543J – ident: e_1_2_7_108_1 doi: 10.1039/C4GC00401A – ident: e_1_2_7_145_1 doi: 10.1016/j.jpowsour.2021.230882 – ident: e_1_2_7_126_1 doi: 10.1002/anie.201403110 – ident: e_1_2_7_193_1 doi: 10.1039/D1TA07328A – ident: e_1_2_7_66_1 doi: 10.1007/s12274-017-1714-0 – ident: e_1_2_7_44_1 doi: 10.1021/ja904010u – ident: e_1_2_7_146_1 doi: 10.1039/D0TA08475A – ident: e_1_2_7_189_1 doi: 10.1021/jacs.2c00242 – ident: e_1_2_7_122_2 doi: 10.1021/jp8060043 – ident: e_1_2_7_131_1 doi: 10.1016/j.apcatb.2017.07.005 – ident: e_1_2_7_3_1 doi: 10.1016/j.ijhydene.2014.12.035 – ident: e_1_2_7_8_3 doi: 10.1038/ncomms11741 – ident: e_1_2_7_115_2 doi: 10.1021/acscentsci.5b00227 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201910274 – ident: e_1_2_7_19_2 doi: 10.1002/adma.201605957 – ident: e_1_2_7_124_1 doi: 10.1021/jacs.2c00465 – ident: e_1_2_7_39_1 doi: 10.1021/acs.jchemed.7b00361 – ident: e_1_2_7_91_3 doi: 10.1016/j.ijhydene.2019.10.124 – ident: e_1_2_7_35_4 doi: 10.1002/anie.201603798 – ident: e_1_2_7_136_1 doi: 10.1039/C6TA11127K – ident: e_1_2_7_12_1 doi: 10.1021/acs.accounts.8b00002 – ident: e_1_2_7_114_6 doi: 10.1039/C9TA06917H – ident: e_1_2_7_79_1 doi: 10.1038/s41467-019-14157-3 – ident: e_1_2_7_25_1 doi: 10.1002/adfm.201706018 – ident: e_1_2_7_56_1 doi: 10.1016/j.jcat.2020.02.003 – ident: e_1_2_7_134_1 doi: 10.1002/ente.201600185 – ident: e_1_2_7_207_1 doi: 10.1039/D0RA02128H – ident: e_1_2_7_196_1 doi: 10.1021/acsaem.0c00383 – ident: e_1_2_7_190_1 doi: 10.1016/j.apcatb.2021.120071 |
SSID | ssj0000491033 |
Score | 2.6508303 |
SecondaryResourceType | review_article |
Snippet | Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aldehydes Anodizing Electrocatalysts Electrochemical oxidation electrode engineering Electrolysis Electrolytes Energy conversion Energy sources high‐efficient hydrogen production Hybrid systems hybrid water electrolysis Hydrazines Lifetime Oxidation Oxygen evolution reactions Reservoirs Seawater Selectivity small molecule oxidation |
Title | Circumventing Challenges: Design of Anodic Electrocatalysts for Hybrid Water Electrolysis Systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203568 https://www.proquest.com/docview/2770184766 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6l4dIeqtJSNS2gPVTiEJnau_GD3iIIihDhQlChF8veh4hU7AriA_0Z_cWdfXi9QUEFLlay3rXjzOfZmdmZbxH6GjERZzSRASUZOChFyIKMyoNAJuEBU9nukVC1w7OzZHoxOrmML3u9v17WUrMs99mftXUlL5EqtIFcVZXsMyTrLgoN8BnkC0eQMByfJOPDxS1rbnTGolq9b_dF0VluRzo1QxuaVc0XbDgxG97oeM393VLzMAyn96pia_ijUFyJtochKfGpzFuW2jZfQJiCwRs1Sj1lF5U3mmNa1C6J4qrp1p1soj50as-eioVb8rFlIovKnZ0XtdNKjYnU_ryuveFXtZ14bdyCUC9uYVQtGAZBktnopvDbDIGT08_Uw-Fordo3NLKFqBS3ACEhjc1ePav82g_mPZeNaJibSa7G5278K7RBwPUgfbQxPpqdnrvIHfhUUUh15Ub7CC0baEi-rf6IVWunc2F8R0hbMvN36K11QfDY4GkT9UT1Hr3xiCk_oGIFWbhD1ndscIVriQ2u8ENcYcAVNrjCGlfYxxW2uNpCF8eT-eE0sJtxBAxMTBV0lmB8lyknXCiKqCjmVPJMrbOSJI2gE5NlJGjMAYdCgOedMnAHmCBUyrjk9CPqV3UlPiEsZMqZmknSEXSgBSgEGEUzyllKOacDFLR_Ws4sU73aMOVXvl5SA7Tn-v82HC2P9txuZZDb9_guBymHERhpSTJARMvlP1fJx5Ozmfv2-cl3_4Jedy_CNuovbxuxAybtsty1GPsHgDuauw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circumventing+Challenges%3A+Design+of+Anodic+Electrocatalysts+for+Hybrid+Water+Electrolysis+Systems&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Hao%E2%80%90Yu&rft.au=Sun%2C+Ming%E2%80%90Lei&rft.au=Ren%2C+Jin%E2%80%90Tao&rft.au=Yuan%2C+Zhong%E2%80%90Yong&rft.date=2023-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1002%2Faenm.202203568&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202203568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |