Circumventing Challenges: Design of Anodic Electrocatalysts for Hybrid Water Electrolysis Systems

Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, ex...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 4
Main Authors Wang, Hao‐Yu, Sun, Ming‐Lei, Ren, Jin‐Tao, Yuan, Zhong‐Yong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Water electrolysis, driven by renewable energy resources, is a promising energy conversion technology that has gained intensive interest in recent years. However, conventional water electrolysis faces a number of challenges, including large thermodynamic potential gaps, valueless anodic products, explosive hydrogen/oxygen mixtures, reactive oxygen species, and limited pure water. Hybrid water electrolysis, appending different electrolytes in the anode compartment to circumvent the above‐mentioned challenges in conventional water electrolysis, is a particularly attractive alternative. In this review, for the first time, a holistic and subtle description of hybrid water electrolysis is provided, focusing on the design of high‐activity/selectivity/stability anodic electrocatalysts for the electrochemical oxidation of various chemicals, such as alcohol, aldehyde, amine, urea and hydrazine, or the oxygen evolution reaction in seawater electrolytes. Comprehensive judging criteria for anodic oxidation reactions, electrocatalysts, and reaction parameters in hybrid water electrolysis are discussed. Some technoeconomic assessments, feasibility analyses, mechanism explorations, and correlation comparisons are involved. Finally, perspectives on and opportunities for future research directions in hybrid water electrolysis systems are outlined. Hybrid water electrolysis can circumvent the challenges of conventional water electrolysis and show several advantages, including energy efficiency, cost, and safety. Based on the considerations of alternative oxidation reactions, electrocatalysts and reaction parameters for hybrid water electrolysis, several judging criteria are proposed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202203568