Limit models in strictly stable abstract elementary classes

In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, elementary classes. In particular we prove the following. Suppose that K$\mathcal {K}$ is an elementary class satisfying...

Full description

Saved in:
Bibliographic Details
Published inMathematical logic quarterly Vol. 70; no. 4; pp. 438 - 453
Main Authors Boney, Will, VanDieren, Monica M.
Format Journal Article
LanguageEnglish
Published Berlin Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, elementary classes. In particular we prove the following. Suppose that K$\mathcal {K}$ is an elementary class satisfying (1)the joint embedding and amalgamation properties with no maximal model of cardinality μ$\mu$, (2)stability in μ$\mu$, (3)κμ∗(K)<μ+$\kappa ^*_\mu (\mathcal {K})<\mu ^+$, (4)continuity for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (i.e., if p∈ga-S(M)$p\in \operatorname{ga-S}(M)$ and M$M$ is a limit model witnessed by ⟨Mi|i<α⟩$\langle M_i| i<\alpha \rangle$ for some limit ordinal α<μ+$\alpha <\mu ^+$ and there exists N≺M0$N \prec M_0$ so that p↾Mi$p\mathord {\upharpoonright }M_i$ does not μ$\mu$‐split over N$N$ for all i<α$i<\alpha$, then p$p$ does not μ$\mu$‐split over N$N$). Then for ϑ$\vartheta$ and δ$\delta$ limit ordinals <μ+$<\mu ^+$ both with cofinality ≥κμ∗(K)$\ge \kappa ^*_\mu (\mathcal {K})$, if K$\mathcal {K}$ satisfies symmetry for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (or just (μ,δ)$(\mu,\delta)$‐symmetry), then, for any M1$M_1$ and M2$M_2$ that are (μ,ϑ)$(\mu,\vartheta)$ and (μ,δ)$(\mu,\delta)$‐limit models over M0$M_0$, respectively, we have that M1$M_1$ and M2$M_2$ are isomorphic over M0$M_0$. Note that no tameness is assumed.
AbstractList In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that K$\mathcal {K}$ is an abstract elementary class satisfying(1)the joint embedding and amalgamation properties with no maximal model of cardinality μ$\mu$,(2)stability in μ$\mu$,(3)κμ∗(K)<μ+$\kappa ^*_\mu (\mathcal {K})<\mu ^+$,(4)continuity for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (i.e., if p∈ga-S(M)$p\in \operatorname{ga-S}(M)$ and M$M$ is a limit model witnessed by ⟨Mi|i<α⟩$\langle M_i| i<\alpha \rangle$ for some limit ordinal α<μ+$\alpha <\mu ^+$ and there exists N≺M0$N \prec M_0$ so that p↾Mi$p\mathord {\upharpoonright }M_i$ does not μ$\mu$‐split over N$N$ for all i<α$i<\alpha$, then p$p$ does not μ$\mu$‐split over N$N$).Then for ϑ$\vartheta$ and δ$\delta$ limit ordinals <μ+$<\mu ^+$ both with cofinality ≥κμ∗(K)$\ge \kappa ^*_\mu (\mathcal {K})$, if K$\mathcal {K}$ satisfies symmetry for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (or just (μ,δ)$(\mu,\delta)$‐symmetry), then, for any M1$M_1$ and M2$M_2$ that are (μ,ϑ)$(\mu,\vartheta)$ and (μ,δ)$(\mu,\delta)$‐limit models over M0$M_0$, respectively, we have that M1$M_1$ and M2$M_2$ are isomorphic over M0$M_0$. Note that no tameness is assumed.
In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, elementary classes. In particular we prove the following. Suppose that K$\mathcal {K}$ is an elementary class satisfying (1)the joint embedding and amalgamation properties with no maximal model of cardinality μ$\mu$, (2)stability in μ$\mu$, (3)κμ∗(K)<μ+$\kappa ^*_\mu (\mathcal {K})<\mu ^+$, (4)continuity for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (i.e., if p∈ga-S(M)$p\in \operatorname{ga-S}(M)$ and M$M$ is a limit model witnessed by ⟨Mi|i<α⟩$\langle M_i| i<\alpha \rangle$ for some limit ordinal α<μ+$\alpha <\mu ^+$ and there exists N≺M0$N \prec M_0$ so that p↾Mi$p\mathord {\upharpoonright }M_i$ does not μ$\mu$‐split over N$N$ for all i<α$i<\alpha$, then p$p$ does not μ$\mu$‐split over N$N$). Then for ϑ$\vartheta$ and δ$\delta$ limit ordinals <μ+$<\mu ^+$ both with cofinality ≥κμ∗(K)$\ge \kappa ^*_\mu (\mathcal {K})$, if K$\mathcal {K}$ satisfies symmetry for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (or just (μ,δ)$(\mu,\delta)$‐symmetry), then, for any M1$M_1$ and M2$M_2$ that are (μ,ϑ)$(\mu,\vartheta)$ and (μ,δ)$(\mu,\delta)$‐limit models over M0$M_0$, respectively, we have that M1$M_1$ and M2$M_2$ are isomorphic over M0$M_0$. Note that no tameness is assumed.
In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that is an abstract elementary class satisfying the joint embedding and amalgamation properties with no maximal model of cardinality , stability in , , continuity for (i.e., if and is a limit model witnessed by for some limit ordinal and there exists so that does not ‐split over for all , then does not ‐split over ). Then for and limit ordinals both with cofinality , if satisfies symmetry for (or just ‐symmetry), then, for any and that are and ‐limit models over , respectively, we have that and are isomorphic over . Note that no tameness is assumed.
Author Boney, Will
VanDieren, Monica M.
Author_xml – sequence: 1
  givenname: Will
  orcidid: 0000-0002-5398-3077
  surname: Boney
  fullname: Boney, Will
  email: wb1011@txstate.edu
  organization: Texas State University
– sequence: 2
  givenname: Monica M.
  surname: VanDieren
  fullname: VanDieren, Monica M.
  organization: Robert Morris University
BookMark eNqFkE1LAzEQhoNUsFavnhc8b51kN8kunkrxC1ZE0HPIphNIye62mxTpvzeloiCIp_lgnnln3nMy6YceCbmiMKcA7KbTfjtnwBgASH5CppQzmheVhAmZQl2ynAsqzsh5COs0wqmEKbltXOdi1g0r9CFzfRbi6Ez0-5To1mOm29TRJmboscM-6nGfGa9DwHBBTq32AS-_4oy839-9LR_z5uXhabloclNQyfNKYgFMrCgY5K2UNZVYVsZSLBhrWV1xa6C1xiJqkwphteC2NSBqQZGbYkauj3s347DdYYhqPezGPkmqgpYF8FKmMCPz45QZhxBGtGozui6dqyiog0HqYJD6NigB5S_AuKijG_r0sPN_Y_UR-3Ae9_-IqOdF8_rDfgK1GH1U
CitedBy_id crossref_primary_10_1016_j_jalgebra_2025_02_006
Cites_doi 10.1016/j.apal.2017.02.002
10.1007/BF02784150
10.1142/S0219061306000487
10.1002/malq.201500033
10.1017/jsl.2015.51
10.1007/s00153-017-0533-z
10.1016/j.apal.2012.09.003
10.1016/j.apal.2016.05.004
10.1142/S0219061318500095
10.1002/malq.19970430115
10.1016/j.apal.2015.12.007
10.1142/S021906131450007X
10.1016/j.apal.2019.102723
10.1090/ulect/050
10.1016/j.apal.2005.10.006
10.1016/j.apal.2016.04.005
10.1016/S0168-0072(98)00016-5
10.1016/S0168-0072(98)00015-3
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
DOI 10.1002/malq.202200075
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1521-3870
EndPage 453
ExternalDocumentID 10_1002_malq_202200075
MALQ202200075
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1402191; 2137465
GroupedDBID --Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ID FETCH-LOGICAL-c3175-87e3026d10ce5b77917e48cf1e322b2985fc0bfcfeeac85f6fa65fbc06961e5c3
IEDL.DBID DR2
ISSN 0942-5616
IngestDate Fri Jul 25 12:15:52 EDT 2025
Thu Apr 24 22:56:48 EDT 2025
Tue Jul 01 03:47:36 EDT 2025
Sun Jul 06 04:45:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-87e3026d10ce5b77917e48cf1e322b2985fc0bfcfeeac85f6fa65fbc06961e5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5398-3077
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmalq.202200075
PQID 3143054714
PQPubID 1006439
PageCount 16
ParticipantIDs proquest_journals_3143054714
crossref_primary_10_1002_malq_202200075
crossref_citationtrail_10_1002_malq_202200075
wiley_primary_10_1002_malq_202200075_MALQ202200075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationSubtitle MLQ
PublicationTitle Mathematical logic quarterly
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 18
1990; 98
2017; 82
1997; 43
2009; 50
2020; 171
2017; 56
2009
2006; 141
2016; 167
2014; 14
2006; 6
2016; 62
1999; 97
2016; 81
2013
2013; 164
2017; 168
2001; 126
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
Grossberg R. (e_1_2_8_8_1) 2017; 82
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
e_1_2_8_23_1
Shelah S. (e_1_2_8_14_1) 2009
References_xml – volume: 56
  start-page: 423
  issue: 17
  year: 2017
  end-page: 452
  article-title: Symmetry in abstract elementary classes with amalgamation
  publication-title: Arch. Math. Log.
– volume: 167
  start-page: 1029
  issue: 11
  year: 2016
  end-page: 1092
  article-title: Building independence relations in abstract elementary classes
  publication-title: Ann. Pure Appl. Log.
– year: 2009
– volume: 62
  start-page: 367
  issue: 4–5
  year: 2016
  end-page: 382
  article-title: Uniqueness of limit models in abstract elementary classes
  publication-title: Math. Log. Q.
– volume: 98
  start-page: 261
  year: 1990
  end-page: 294
  article-title: Categoricity for abstract classes with amalgamation
  publication-title: Ann. Pure Appl. Log.
– volume: 97
  start-page: 1
  year: 1999
  end-page: 25
  article-title: Toward categoricity for classes with no maximal models
  publication-title: Ann. Pure Appl. Log.
– volume: 50
  year: 2009
– volume: 141
  start-page: 108
  year: 2006
  end-page: 147
  article-title: Categoricity in abstract elementary classes with no maximal models
  publication-title: Ann. Pure Appl. Log.
– volume: 82
  start-page: 1387
  issue: 4
  year: 2017
  end-page: 1408
  article-title: Equivalent definitions of superstability in tame abstract elementary classes
  publication-title: Ann. Pure Appl. Log.
– volume: 126
  start-page: 29
  year: 2001
  end-page: 128
  article-title: Categoricity of an abstract elementary class in two successive cardinals
  publication-title: Israel J. Math.
– volume: 164
  start-page: 131
  year: 2013
  end-page: 133
  article-title: Erratum to ‘Categoricity in abstract elementary classes with no maximal models’ [Ann. Pure Appl. Logic 141 (2006) 108–147]
  publication-title: Ann. Pure Appl. Log.
– volume: 171
  issue: 1
  year: 2020
  article-title: Algebraic description of limit models in classes of abelian groups
  publication-title: Ann. Pure Appl. Log.
– volume: 18
  issue: 2
  year: 2018
  article-title: Toward a stability theory of tame abstract elementary classes
  publication-title: J. Math. Log.
– volume: 14
  year: 2014
  article-title: Tameness and extending frames
  publication-title: J. Math. Log.
– volume: 167
  start-page: 1171
  year: 2016
  end-page: 1183
  article-title: Superstability and symmetry
  publication-title: Ann. Pure Appl. Log.
– volume: 81
  start-page: 357
  issue: 1
  year: 2016
  end-page: 383
  article-title: Forking and superstability in tame AECs
  publication-title: J. Symb. Log.
– volume: 168
  start-page: 1517
  year: 2017
  end-page: 1551
  article-title: Forking in short and tame abstract elementary classes
  publication-title: Ann. Pure Appl. Log.
– volume: 6
  start-page: 25
  issue: 1
  year: 2006
  end-page: 49
  article-title: Galois‐stability of tame abstract elementary classes
  publication-title: J. Math. Log.
– volume: 43
  start-page: 134
  year: 1997
  end-page: 142
  article-title: On nonstructure of elementary submodels of an unsuperstable homogeneous structure
  publication-title: Math. Log. Q.
– volume: 167
  start-page: 395
  year: 2016
  end-page: 407
  article-title: Symmetry and the union of saturated models in superstable abstract elementary classes
  publication-title: Ann. Pure Appl. Log.
– year: 2013
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apal.2017.02.002
– ident: e_1_2_8_12_1
  doi: 10.1007/BF02784150
– ident: e_1_2_8_5_1
– volume: 82
  start-page: 1387
  issue: 4
  year: 2017
  ident: e_1_2_8_8_1
  article-title: Equivalent definitions of superstability in tame abstract elementary classes
  publication-title: Ann. Pure Appl. Log.
– ident: e_1_2_8_6_1
  doi: 10.1142/S0219061306000487
– ident: e_1_2_8_7_1
  doi: 10.1002/malq.201500033
– ident: e_1_2_8_22_1
  doi: 10.1017/jsl.2015.51
– ident: e_1_2_8_20_1
  doi: 10.1007/s00153-017-0533-z
– ident: e_1_2_8_17_1
  doi: 10.1016/j.apal.2012.09.003
– ident: e_1_2_8_18_1
  doi: 10.1016/j.apal.2016.05.004
– ident: e_1_2_8_23_1
  doi: 10.1142/S0219061318500095
– ident: e_1_2_8_9_1
  doi: 10.1002/malq.19970430115
– ident: e_1_2_8_19_1
  doi: 10.1016/j.apal.2015.12.007
– ident: e_1_2_8_3_1
  doi: 10.1142/S021906131450007X
– ident: e_1_2_8_10_1
  doi: 10.1016/j.apal.2019.102723
– ident: e_1_2_8_2_1
  doi: 10.1090/ulect/050
– volume-title: Classification Theory for Abstract Elementary Classes
  year: 2009
  ident: e_1_2_8_14_1
– ident: e_1_2_8_16_1
  doi: 10.1016/j.apal.2005.10.006
– ident: e_1_2_8_21_1
  doi: 10.1016/j.apal.2016.04.005
– ident: e_1_2_8_13_1
– ident: e_1_2_8_11_1
  doi: 10.1016/S0168-0072(98)00016-5
– ident: e_1_2_8_15_1
  doi: 10.1016/S0168-0072(98)00015-3
SSID ssj0005170
Score 2.3289688
Snippet In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 438
SubjectTerms Splitting
Symmetry
Title Limit models in strictly stable abstract elementary classes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmalq.202200075
https://www.proquest.com/docview/3143054714
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7akx58i9VachA8bbubbDZdPBWxiFhRsdDbsskmINZVu9tD_fVOso-2ggh6SyDZxyQz803IfIPQGeWUe5KFjqAxc3ziSqcXh4lDtCZMgTnk3OQ7D--C65F_M2bjpSz-gh-iPnAzmmHttVHwWGTdBWnoazz5gPiOEOv2wAibC1sGFT0u-KOYZ6vFQQgDEVfgBRVro0u6q9NXvdICai4DVutxBtsorr61uGjy0pnloiM_v9E4_udndtBWCUdxv9g_u2hNpXtoc1hzuWb76MLmQGFbMifDzyk2lT5kPplDw-RdYXhHbnKtsCqvok_nWBpQrrIDNBpcPV1eO2XJBUcaIAG2UVGIyhLPlYoJziGYU35Pak-B4gsS9piWrtBSKzDY0Al0HDAtpBuEgaeYpIeokb6l6ghhRVlAhUwSxqmvAAgJ4nLpJokfSgiBRRM5lcgjWfKRm7IYk6hgUiaREUpUC6WJzuvx7wUTx48jW9UKRqVGZhH1DLkZuGK_iYhdil-eEg37tw917_gvk07QBrT9InWxhRr5dKZOAcPkoo3WiX_ftrv1C5gA6PE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oPKgHf4vTqT0InjrbpGlXPA1xTF0HygbeSvOagjinrt1h_vUm6Y85QQS9NSUtbZL33veFvO8BnFGPejYy3-Q0YqZDLDRbkR-bJEkIE9Idep7Kdw76bnfo3D6y8jShyoXJ9SGqDTdlGdpfKwNXG9IXc9XQl2j0LgkeITruLcOKKuutWdXDXEGK2bpenCQxknO5tlvqNlrkYvH5xbg0B5tfIauOOZ1N4OXX5kdNnpvTjDfx45uQ479-Zws2CkRqtPMltA1LYrwD60El55ruwqVOgzJ01ZzUeBobqtgHZqOZvFCpV0bE1Y4JZoYoTqNPZgYqXC7SPRh2rgdXXbOoumCiwhLSPQoqiVlsWygY9zzJ54TTwsQW0vY58VssQYsnmAjps2XDTSKXJRwt13dtwZDuQ238OhYHYAjKXMoxjplHHSGxECeWh1YcOz5KFszrYJZjHmIhSa4qY4zCXEyZhGpQwmpQ6nBe9X_LxTh-7NkopzAsjDINqa30zWQ0dupA9Fz88pYwaPfuq9bhXx46hdXuIOiFvZv-3RGsyftOnsnYgFo2mYpjCWkyfqIX7Se2H-w1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8ANEHv8X52QfBp25t0qQtPolz-LENFQXfSnNNQJxzbt2D_vUm_doURNC3piSlueTufhdyvwM4oj71XWShLWjMbI84aAdxmNhEKcKkNoe-b_KdO11-8eBdPbLHqSz-nB-iOnAzmpHZa6Pgg0Q1JqShL3HvTcd3hGRubxbmPe4EZl837yYEUszNysXpGEaHXNzlJW2jQxpfx391SxOsOY1YM5fTWoG4_Nn8pslzfZyKOn5843H8z2xWYbnAo9ZpvoHWYEb212GpU5G5jjbgJEuCsrKaOSPrqW-ZUh-Y9t71g0m8smJhzkswtWRxF334bqFB5XK0CQ-t8_uzC7uouWCjQRLaOEqqw7LEdVAy4fs6mpNegMqVWvMFCQOm0BEKldQWWze4ijlTAh0eclcypFsw13_ty22wJGWcCkwS5lNPaiQkiOOjkyReiDoGFjWwS5FHWBCSm7oYvSinUiaREUpUCaUGx1X_QU7F8WPPvXIFo0IlRxF1DbuZ9sVeDUi2FL98Jeqctm-r1s5fBh3Cwk2zFbUvu9e7sKhfe3ka4x7MpcOx3Nd4JhUH2Zb9BBTM6u0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limit+models+in+strictly+stable+abstract+elementary+classes&rft.jtitle=Mathematical+logic+quarterly&rft.au=Boney%2C+Will&rft.au=VanDieren%2C+Monica+M&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0942-5616&rft.eissn=1521-3870&rft.volume=70&rft.issue=4&rft.spage=438&rft.epage=453&rft_id=info:doi/10.1002%2Fmalq.202200075&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-5616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-5616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-5616&client=summon