Limit models in strictly stable abstract elementary classes
In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, elementary classes. In particular we prove the following. Suppose that K$\mathcal {K}$ is an elementary class satisfying...
Saved in:
Published in | Mathematical logic quarterly Vol. 70; no. 4; pp. 438 - 453 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, elementary classes. In particular we prove the following. Suppose that K$\mathcal {K}$ is an elementary class satisfying
(1)the joint embedding and amalgamation properties with no maximal model of cardinality μ$\mu$,
(2)stability in μ$\mu$,
(3)κμ∗(K)<μ+$\kappa ^*_\mu (\mathcal {K})<\mu ^+$,
(4)continuity for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (i.e., if p∈ga-S(M)$p\in \operatorname{ga-S}(M)$ and M$M$ is a limit model witnessed by ⟨Mi|i<α⟩$\langle M_i| i<\alpha \rangle$ for some limit ordinal α<μ+$\alpha <\mu ^+$ and there exists N≺M0$N \prec M_0$ so that p↾Mi$p\mathord {\upharpoonright }M_i$ does not μ$\mu$‐split over N$N$ for all i<α$i<\alpha$, then p$p$ does not μ$\mu$‐split over N$N$).
Then for ϑ$\vartheta$ and δ$\delta$ limit ordinals <μ+$<\mu ^+$ both with cofinality ≥κμ∗(K)$\ge \kappa ^*_\mu (\mathcal {K})$, if K$\mathcal {K}$ satisfies symmetry for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (or just (μ,δ)$(\mu,\delta)$‐symmetry), then, for any M1$M_1$ and M2$M_2$ that are (μ,ϑ)$(\mu,\vartheta)$ and (μ,δ)$(\mu,\delta)$‐limit models over M0$M_0$, respectively, we have that M1$M_1$ and M2$M_2$ are isomorphic over M0$M_0$. Note that no tameness is assumed. |
---|---|
AbstractList | In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that K$\mathcal {K}$ is an abstract elementary class satisfying(1)the joint embedding and amalgamation properties with no maximal model of cardinality μ$\mu$,(2)stability in μ$\mu$,(3)κμ∗(K)<μ+$\kappa ^*_\mu (\mathcal {K})<\mu ^+$,(4)continuity for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (i.e., if p∈ga-S(M)$p\in \operatorname{ga-S}(M)$ and M$M$ is a limit model witnessed by ⟨Mi|i<α⟩$\langle M_i| i<\alpha \rangle$ for some limit ordinal α<μ+$\alpha <\mu ^+$ and there exists N≺M0$N \prec M_0$ so that p↾Mi$p\mathord {\upharpoonright }M_i$ does not μ$\mu$‐split over N$N$ for all i<α$i<\alpha$, then p$p$ does not μ$\mu$‐split over N$N$).Then for ϑ$\vartheta$ and δ$\delta$ limit ordinals <μ+$<\mu ^+$ both with cofinality ≥κμ∗(K)$\ge \kappa ^*_\mu (\mathcal {K})$, if K$\mathcal {K}$ satisfies symmetry for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (or just (μ,δ)$(\mu,\delta)$‐symmetry), then, for any M1$M_1$ and M2$M_2$ that are (μ,ϑ)$(\mu,\vartheta)$ and (μ,δ)$(\mu,\delta)$‐limit models over M0$M_0$, respectively, we have that M1$M_1$ and M2$M_2$ are isomorphic over M0$M_0$. Note that no tameness is assumed. In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, elementary classes. In particular we prove the following. Suppose that K$\mathcal {K}$ is an elementary class satisfying (1)the joint embedding and amalgamation properties with no maximal model of cardinality μ$\mu$, (2)stability in μ$\mu$, (3)κμ∗(K)<μ+$\kappa ^*_\mu (\mathcal {K})<\mu ^+$, (4)continuity for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (i.e., if p∈ga-S(M)$p\in \operatorname{ga-S}(M)$ and M$M$ is a limit model witnessed by ⟨Mi|i<α⟩$\langle M_i| i<\alpha \rangle$ for some limit ordinal α<μ+$\alpha <\mu ^+$ and there exists N≺M0$N \prec M_0$ so that p↾Mi$p\mathord {\upharpoonright }M_i$ does not μ$\mu$‐split over N$N$ for all i<α$i<\alpha$, then p$p$ does not μ$\mu$‐split over N$N$). Then for ϑ$\vartheta$ and δ$\delta$ limit ordinals <μ+$<\mu ^+$ both with cofinality ≥κμ∗(K)$\ge \kappa ^*_\mu (\mathcal {K})$, if K$\mathcal {K}$ satisfies symmetry for non-μ-splitting${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (or just (μ,δ)$(\mu,\delta)$‐symmetry), then, for any M1$M_1$ and M2$M_2$ that are (μ,ϑ)$(\mu,\vartheta)$ and (μ,δ)$(\mu,\delta)$‐limit models over M0$M_0$, respectively, we have that M1$M_1$ and M2$M_2$ are isomorphic over M0$M_0$. Note that no tameness is assumed. In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that is an abstract elementary class satisfying the joint embedding and amalgamation properties with no maximal model of cardinality , stability in , , continuity for (i.e., if and is a limit model witnessed by for some limit ordinal and there exists so that does not ‐split over for all , then does not ‐split over ). Then for and limit ordinals both with cofinality , if satisfies symmetry for (or just ‐symmetry), then, for any and that are and ‐limit models over , respectively, we have that and are isomorphic over . Note that no tameness is assumed. |
Author | Boney, Will VanDieren, Monica M. |
Author_xml | – sequence: 1 givenname: Will orcidid: 0000-0002-5398-3077 surname: Boney fullname: Boney, Will email: wb1011@txstate.edu organization: Texas State University – sequence: 2 givenname: Monica M. surname: VanDieren fullname: VanDieren, Monica M. organization: Robert Morris University |
BookMark | eNqFkE1LAzEQhoNUsFavnhc8b51kN8kunkrxC1ZE0HPIphNIye62mxTpvzeloiCIp_lgnnln3nMy6YceCbmiMKcA7KbTfjtnwBgASH5CppQzmheVhAmZQl2ynAsqzsh5COs0wqmEKbltXOdi1g0r9CFzfRbi6Ez0-5To1mOm29TRJmboscM-6nGfGa9DwHBBTq32AS-_4oy839-9LR_z5uXhabloclNQyfNKYgFMrCgY5K2UNZVYVsZSLBhrWV1xa6C1xiJqkwphteC2NSBqQZGbYkauj3s347DdYYhqPezGPkmqgpYF8FKmMCPz45QZhxBGtGozui6dqyiog0HqYJD6NigB5S_AuKijG_r0sPN_Y_UR-3Ae9_-IqOdF8_rDfgK1GH1U |
CitedBy_id | crossref_primary_10_1016_j_jalgebra_2025_02_006 |
Cites_doi | 10.1016/j.apal.2017.02.002 10.1007/BF02784150 10.1142/S0219061306000487 10.1002/malq.201500033 10.1017/jsl.2015.51 10.1007/s00153-017-0533-z 10.1016/j.apal.2012.09.003 10.1016/j.apal.2016.05.004 10.1142/S0219061318500095 10.1002/malq.19970430115 10.1016/j.apal.2015.12.007 10.1142/S021906131450007X 10.1016/j.apal.2019.102723 10.1090/ulect/050 10.1016/j.apal.2005.10.006 10.1016/j.apal.2016.04.005 10.1016/S0168-0072(98)00016-5 10.1016/S0168-0072(98)00015-3 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/malq.202200075 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1521-3870 |
EndPage | 453 |
ExternalDocumentID | 10_1002_malq_202200075 MALQ202200075 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1402191; 2137465 |
GroupedDBID | --Z -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION |
ID | FETCH-LOGICAL-c3175-87e3026d10ce5b77917e48cf1e322b2985fc0bfcfeeac85f6fa65fbc06961e5c3 |
IEDL.DBID | DR2 |
ISSN | 0942-5616 |
IngestDate | Fri Jul 25 12:15:52 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 Tue Jul 01 03:47:36 EDT 2025 Sun Jul 06 04:45:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-87e3026d10ce5b77917e48cf1e322b2985fc0bfcfeeac85f6fa65fbc06961e5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5398-3077 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmalq.202200075 |
PQID | 3143054714 |
PQPubID | 1006439 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3143054714 crossref_primary_10_1002_malq_202200075 crossref_citationtrail_10_1002_malq_202200075 wiley_primary_10_1002_malq_202200075_MALQ202200075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationSubtitle | MLQ |
PublicationTitle | Mathematical logic quarterly |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 18 1990; 98 2017; 82 1997; 43 2009; 50 2020; 171 2017; 56 2009 2006; 141 2016; 167 2014; 14 2006; 6 2016; 62 1999; 97 2016; 81 2013 2013; 164 2017; 168 2001; 126 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 Grossberg R. (e_1_2_8_8_1) 2017; 82 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 e_1_2_8_23_1 Shelah S. (e_1_2_8_14_1) 2009 |
References_xml | – volume: 56 start-page: 423 issue: 17 year: 2017 end-page: 452 article-title: Symmetry in abstract elementary classes with amalgamation publication-title: Arch. Math. Log. – volume: 167 start-page: 1029 issue: 11 year: 2016 end-page: 1092 article-title: Building independence relations in abstract elementary classes publication-title: Ann. Pure Appl. Log. – year: 2009 – volume: 62 start-page: 367 issue: 4–5 year: 2016 end-page: 382 article-title: Uniqueness of limit models in abstract elementary classes publication-title: Math. Log. Q. – volume: 98 start-page: 261 year: 1990 end-page: 294 article-title: Categoricity for abstract classes with amalgamation publication-title: Ann. Pure Appl. Log. – volume: 97 start-page: 1 year: 1999 end-page: 25 article-title: Toward categoricity for classes with no maximal models publication-title: Ann. Pure Appl. Log. – volume: 50 year: 2009 – volume: 141 start-page: 108 year: 2006 end-page: 147 article-title: Categoricity in abstract elementary classes with no maximal models publication-title: Ann. Pure Appl. Log. – volume: 82 start-page: 1387 issue: 4 year: 2017 end-page: 1408 article-title: Equivalent definitions of superstability in tame abstract elementary classes publication-title: Ann. Pure Appl. Log. – volume: 126 start-page: 29 year: 2001 end-page: 128 article-title: Categoricity of an abstract elementary class in two successive cardinals publication-title: Israel J. Math. – volume: 164 start-page: 131 year: 2013 end-page: 133 article-title: Erratum to ‘Categoricity in abstract elementary classes with no maximal models’ [Ann. Pure Appl. Logic 141 (2006) 108–147] publication-title: Ann. Pure Appl. Log. – volume: 171 issue: 1 year: 2020 article-title: Algebraic description of limit models in classes of abelian groups publication-title: Ann. Pure Appl. Log. – volume: 18 issue: 2 year: 2018 article-title: Toward a stability theory of tame abstract elementary classes publication-title: J. Math. Log. – volume: 14 year: 2014 article-title: Tameness and extending frames publication-title: J. Math. Log. – volume: 167 start-page: 1171 year: 2016 end-page: 1183 article-title: Superstability and symmetry publication-title: Ann. Pure Appl. Log. – volume: 81 start-page: 357 issue: 1 year: 2016 end-page: 383 article-title: Forking and superstability in tame AECs publication-title: J. Symb. Log. – volume: 168 start-page: 1517 year: 2017 end-page: 1551 article-title: Forking in short and tame abstract elementary classes publication-title: Ann. Pure Appl. Log. – volume: 6 start-page: 25 issue: 1 year: 2006 end-page: 49 article-title: Galois‐stability of tame abstract elementary classes publication-title: J. Math. Log. – volume: 43 start-page: 134 year: 1997 end-page: 142 article-title: On nonstructure of elementary submodels of an unsuperstable homogeneous structure publication-title: Math. Log. Q. – volume: 167 start-page: 395 year: 2016 end-page: 407 article-title: Symmetry and the union of saturated models in superstable abstract elementary classes publication-title: Ann. Pure Appl. Log. – year: 2013 – ident: e_1_2_8_4_1 doi: 10.1016/j.apal.2017.02.002 – ident: e_1_2_8_12_1 doi: 10.1007/BF02784150 – ident: e_1_2_8_5_1 – volume: 82 start-page: 1387 issue: 4 year: 2017 ident: e_1_2_8_8_1 article-title: Equivalent definitions of superstability in tame abstract elementary classes publication-title: Ann. Pure Appl. Log. – ident: e_1_2_8_6_1 doi: 10.1142/S0219061306000487 – ident: e_1_2_8_7_1 doi: 10.1002/malq.201500033 – ident: e_1_2_8_22_1 doi: 10.1017/jsl.2015.51 – ident: e_1_2_8_20_1 doi: 10.1007/s00153-017-0533-z – ident: e_1_2_8_17_1 doi: 10.1016/j.apal.2012.09.003 – ident: e_1_2_8_18_1 doi: 10.1016/j.apal.2016.05.004 – ident: e_1_2_8_23_1 doi: 10.1142/S0219061318500095 – ident: e_1_2_8_9_1 doi: 10.1002/malq.19970430115 – ident: e_1_2_8_19_1 doi: 10.1016/j.apal.2015.12.007 – ident: e_1_2_8_3_1 doi: 10.1142/S021906131450007X – ident: e_1_2_8_10_1 doi: 10.1016/j.apal.2019.102723 – ident: e_1_2_8_2_1 doi: 10.1090/ulect/050 – volume-title: Classification Theory for Abstract Elementary Classes year: 2009 ident: e_1_2_8_14_1 – ident: e_1_2_8_16_1 doi: 10.1016/j.apal.2005.10.006 – ident: e_1_2_8_21_1 doi: 10.1016/j.apal.2016.04.005 – ident: e_1_2_8_13_1 – ident: e_1_2_8_11_1 doi: 10.1016/S0168-0072(98)00016-5 – ident: e_1_2_8_15_1 doi: 10.1016/S0168-0072(98)00015-3 |
SSID | ssj0005170 |
Score | 2.3289688 |
Snippet | In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 438 |
SubjectTerms | Splitting Symmetry |
Title | Limit models in strictly stable abstract elementary classes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmalq.202200075 https://www.proquest.com/docview/3143054714 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7akx58i9VachA8bbubbDZdPBWxiFhRsdDbsskmINZVu9tD_fVOso-2ggh6SyDZxyQz803IfIPQGeWUe5KFjqAxc3ziSqcXh4lDtCZMgTnk3OQ7D--C65F_M2bjpSz-gh-iPnAzmmHttVHwWGTdBWnoazz5gPiOEOv2wAibC1sGFT0u-KOYZ6vFQQgDEVfgBRVro0u6q9NXvdICai4DVutxBtsorr61uGjy0pnloiM_v9E4_udndtBWCUdxv9g_u2hNpXtoc1hzuWb76MLmQGFbMifDzyk2lT5kPplDw-RdYXhHbnKtsCqvok_nWBpQrrIDNBpcPV1eO2XJBUcaIAG2UVGIyhLPlYoJziGYU35Pak-B4gsS9piWrtBSKzDY0Al0HDAtpBuEgaeYpIeokb6l6ghhRVlAhUwSxqmvAAgJ4nLpJokfSgiBRRM5lcgjWfKRm7IYk6hgUiaREUpUC6WJzuvx7wUTx48jW9UKRqVGZhH1DLkZuGK_iYhdil-eEg37tw917_gvk07QBrT9InWxhRr5dKZOAcPkoo3WiX_ftrv1C5gA6PE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oPKgHf4vTqT0InjrbpGlXPA1xTF0HygbeSvOagjinrt1h_vUm6Y85QQS9NSUtbZL33veFvO8BnFGPejYy3-Q0YqZDLDRbkR-bJEkIE9Idep7Kdw76bnfo3D6y8jShyoXJ9SGqDTdlGdpfKwNXG9IXc9XQl2j0LgkeITruLcOKKuutWdXDXEGK2bpenCQxknO5tlvqNlrkYvH5xbg0B5tfIauOOZ1N4OXX5kdNnpvTjDfx45uQ479-Zws2CkRqtPMltA1LYrwD60El55ruwqVOgzJ01ZzUeBobqtgHZqOZvFCpV0bE1Y4JZoYoTqNPZgYqXC7SPRh2rgdXXbOoumCiwhLSPQoqiVlsWygY9zzJ54TTwsQW0vY58VssQYsnmAjps2XDTSKXJRwt13dtwZDuQ238OhYHYAjKXMoxjplHHSGxECeWh1YcOz5KFszrYJZjHmIhSa4qY4zCXEyZhGpQwmpQ6nBe9X_LxTh-7NkopzAsjDINqa30zWQ0dupA9Fz88pYwaPfuq9bhXx46hdXuIOiFvZv-3RGsyftOnsnYgFo2mYpjCWkyfqIX7Se2H-w1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8ANEHv8X52QfBp25t0qQtPolz-LENFQXfSnNNQJxzbt2D_vUm_doURNC3piSlueTufhdyvwM4oj71XWShLWjMbI84aAdxmNhEKcKkNoe-b_KdO11-8eBdPbLHqSz-nB-iOnAzmpHZa6Pgg0Q1JqShL3HvTcd3hGRubxbmPe4EZl837yYEUszNysXpGEaHXNzlJW2jQxpfx391SxOsOY1YM5fTWoG4_Nn8pslzfZyKOn5843H8z2xWYbnAo9ZpvoHWYEb212GpU5G5jjbgJEuCsrKaOSPrqW-ZUh-Y9t71g0m8smJhzkswtWRxF334bqFB5XK0CQ-t8_uzC7uouWCjQRLaOEqqw7LEdVAy4fs6mpNegMqVWvMFCQOm0BEKldQWWze4ijlTAh0eclcypFsw13_ty22wJGWcCkwS5lNPaiQkiOOjkyReiDoGFjWwS5FHWBCSm7oYvSinUiaREUpUCaUGx1X_QU7F8WPPvXIFo0IlRxF1DbuZ9sVeDUi2FL98Jeqctm-r1s5fBh3Cwk2zFbUvu9e7sKhfe3ka4x7MpcOx3Nd4JhUH2Zb9BBTM6u0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limit+models+in+strictly+stable+abstract+elementary+classes&rft.jtitle=Mathematical+logic+quarterly&rft.au=Boney%2C+Will&rft.au=VanDieren%2C+Monica+M&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0942-5616&rft.eissn=1521-3870&rft.volume=70&rft.issue=4&rft.spage=438&rft.epage=453&rft_id=info:doi/10.1002%2Fmalq.202200075&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-5616&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-5616&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-5616&client=summon |