Ion Impact Induced Ultrafast Electron Dynamics in Finite Graphene‐Type Hubbard Clusters

Strongly correlated systems of fermions have an interesting phase diagram arising from the Hubbard gap. Excitation across the gap leads to the formation of doubly occupied lattice sites (doublons) which offers interesting electronic and optical properties. Moreover, when the system is driven out of...

Full description

Saved in:
Bibliographic Details
Published inphysica status solidi (b) Vol. 256; no. 7
Main Authors Bonitz, Michael, Balzer, Karsten, Schlünzen, Niclas, Rasmussen, Maximilian Rodriguez, Joost, Jan‐Philip
Format Journal Article
LanguageEnglish
Published 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Strongly correlated systems of fermions have an interesting phase diagram arising from the Hubbard gap. Excitation across the gap leads to the formation of doubly occupied lattice sites (doublons) which offers interesting electronic and optical properties. Moreover, when the system is driven out of equilibrium interesting collective dynamics may arise that are related to the spatial propagation of doublons. Here, a novel mechanism that was recently proposed by the authors [Balzer et al., Phys. Rev. Lett. 121, 267602 (2018)] is verified by exact diagonalization and nonequilibrium Green functions (NEGF) simulations – fermionic doublon creation by the impact of energetic ions. The formation of a nonequilibrium steady state with homogeneous doublon distribution is reported. The effect should be particularly important for correlated finite systems, such as graphene nanoribbons, and directly observable with fermionic atoms in optical lattices. It is demonstrated that doublon formation and propagation in correlated lattice systems can be accurately simulated with NEGF. In addition to two‐time results, single‐time results within the generalized Kadanoff–Baym ansatz (GKBA) with Hartree–Fock propagators (HF‐GKBA) is presented. Finally systematic improvements of the GKBA that use correlated propagators (correlated GKBA) and a correlated initial state are discussed. In this article, correlated inhomogeneous finite graphene‐type Hubbard clusters are studied. The results are expected to be relevant for ultracold fermionic atoms in optical lattices as well as for electrons in graphene clusters and nanoribbons. The excitation of correlated electron pairs (doublons) in a graphene nanoribbon by multiple ion impacts is analyzed, the result of nonequilibrium Green functions simulations is shown.
ISSN:0370-1972
1521-3951
DOI:10.1002/pssb.201800490