Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics

The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Regulatory, integrative and comparative physiology Vol. 309; no. 8; pp. R855 - R863
Main Authors Williamson, David L., Dungan, Cory M., Mahmoud, Abeer M., Mey, Jacob T., Blackburn, Brian K., Haus, Jacob M.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 15.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m −2 ·min −1 )-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation ( P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin ( P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower ( P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher ( P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower ( P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
AbstractList The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU-m...-min...)-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals. (ProQuest: ... denotes formulae/symbols omitted.)
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m −2 ·min −1 )-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation ( P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin ( P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower ( P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher ( P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower ( P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m −2 ·min −1 )-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation ( P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin ( P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower ( P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher ( P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower ( P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
Author Mey, Jacob T.
Haus, Jacob M.
Blackburn, Brian K.
Williamson, David L.
Dungan, Cory M.
Mahmoud, Abeer M.
Author_xml – sequence: 1
  givenname: David L.
  surname: Williamson
  fullname: Williamson, David L.
  organization: Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
– sequence: 2
  givenname: Cory M.
  surname: Dungan
  fullname: Dungan, Cory M.
  organization: Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
– sequence: 3
  givenname: Abeer M.
  surname: Mahmoud
  fullname: Mahmoud, Abeer M.
  organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
– sequence: 4
  givenname: Jacob T.
  surname: Mey
  fullname: Mey, Jacob T.
  organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
– sequence: 5
  givenname: Brian K.
  surname: Blackburn
  fullname: Blackburn, Brian K.
  organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
– sequence: 6
  givenname: Jacob M.
  surname: Haus
  fullname: Haus, Jacob M.
  organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26269521$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFL8ABWeLCJYv_xY4vSNW20EqVKpXlbHmTSfHi2MF2KvXbk9Atgh44zWF-7-nNvBN0FGIAhN5Ssqa0Zh_tfkxwN60JYU29ZoTWL9BqXrCKCk2O0IpwyStJqT5GJznvCSGCC_4KHTPJpK4ZXaGvZztIyYaCby_Oz2k1bG9uNxQnyGMMGTIuEbuQJ-_CPHH-AR6K9XiYcusB9ykOePswAma4c3YHxbX5NXrZW5_hzWGeom-fL7aby-r65svV5uy6ajmVpeotVbZpJbQcesZUV4MSPRFWAeGgu16RHdegRW2lFY1UQnEKlikGtOkazk_Rp0ffcdoN0LUQSrLejMkNNj2YaJ35dxPcd3MX742QUmohZoMPB4MUf06QixlcbsF7GyBO2VDFmGYNZ3pG3z9D93FKYT5voWoi5n8uhu_-TvQnytO_Z6B5BNoUc07Qm9YVW1xcAjpvKDFLteZQrfldrVmqnaXsmfTJ_T-iX1MeqF0
CODEN AJPRDO
CitedBy_id crossref_primary_10_1096_fj_201901799RR
crossref_primary_10_1091_mbc_E17_01_0049
crossref_primary_10_1152_ajpendo_00146_2017
crossref_primary_10_2337_dbi24_0013
crossref_primary_10_14814_phy2_14042
crossref_primary_10_1152_ajpcell_00340_2020
crossref_primary_10_14814_phy2_12895
crossref_primary_10_1016_j_ebiom_2018_09_051
crossref_primary_10_3390_nu8010047
crossref_primary_10_1038_s41467_022_34110_1
crossref_primary_10_2139_ssrn_4061018
crossref_primary_10_1016_j_nutres_2018_03_013
crossref_primary_10_1152_ajpregu_00159_2017
crossref_primary_10_1249_MSS_0000000000001395
crossref_primary_10_3389_fmed_2024_1471642
crossref_primary_10_1016_j_tem_2016_08_005
crossref_primary_10_1017_jns_2023_37
crossref_primary_10_3892_mmr_2017_6322
crossref_primary_10_1038_s12276_023_01056_3
crossref_primary_10_1016_j_bbrc_2016_11_159
crossref_primary_10_1016_j_biopha_2024_117122
crossref_primary_10_1016_j_exger_2020_110964
crossref_primary_10_3389_fcvm_2018_00117
crossref_primary_10_3389_fnut_2021_615849
crossref_primary_10_1152_ajpendo_00059_2016
crossref_primary_10_1016_j_metop_2023_100264
crossref_primary_10_14814_phy2_14011
crossref_primary_10_1038_s41467_021_22068_5
crossref_primary_10_2174_1389450123666220111115528
crossref_primary_10_3389_fnut_2019_00087
crossref_primary_10_1152_ajpendo_00120_2017
crossref_primary_10_1111_cas_14110
crossref_primary_10_1007_s11745_016_4168_3
crossref_primary_10_3389_fphys_2020_613648
crossref_primary_10_3390_ijms19072043
crossref_primary_10_1007_s12257_021_0140_z
crossref_primary_10_2337_db22_0402
Cites_doi 10.1016/j.bbrc.2013.12.023
10.1016/j.cellsig.2013.08.038
10.1152/japplphysiol.01350.2013
10.1093/ajcn/82.2.355
10.1016/S1097-2765(02)00706-2
10.1074/jbc.M706643200
10.1074/jbc.M109.047688
10.1530/EJE-11-0053
10.1677/JOE-09-0202
10.1038/nature14190
10.1111/j.1399-543X.2004.00071.x
10.1210/jc.2009-1101
10.1016/j.bbrc.2011.08.017
10.1021/bi047574r
10.1152/ajpendo.00409.2012
10.1152/ajpregu.00337.2010
10.1016/j.exger.2015.02.015
10.1210/en.2004-0777
10.1152/ajpendo.00221.2011
10.1152/ajpendo.00052.2008
10.1038/oby.2011.240
10.1371/journal.pone.0010805
10.3945/jn.108.099846
10.1016/j.cmet.2012.04.005
10.1126/scisignal.2005103
10.2337/db08-1228
10.1152/ajpendo.2001.281.6.E1137
10.1111/dme.12184
10.1152/ajpendo.1996.270.2.E273
10.1093/gerona/61.2.156
10.1172/JCI29528
10.1101/gad.1256804
10.1096/fj.12-224006
10.1038/nsmb.1564
10.1016/j.cell.2005.02.031
10.1016/j.nut.2010.07.016
10.1016/j.clnu.2011.02.009
10.1074/jbc.M610023200
10.1038/ncb840
10.1038/oby.2009.49
10.1128/MCB.25.14.5834-5845.2005
10.1002/j.1460-2075.1996.tb00398.x
10.1101/gad.901101
10.2119/molmed.2010.00023
10.1016/j.cell.2012.03.017
10.1038/nature02866
10.1113/jphysiol.2002.036673
10.1017/S0029665112000754
10.1002/acr.22346
10.1152/ajpendo.00397.2004
10.1128/MCB.22.7.2283-2293.2002
10.1249/MSS.0b013e318228bf85
10.1016/j.bbrc.2014.10.032
10.1016/j.bbrc.2011.01.078
10.1152/ajpregu.00550.2009
10.1152/ajpcell.1997.272.2.C754
10.1158/1541-7786.MCR-14-0343
10.1101/gad.1617608
10.1172/JCI109394
10.1210/jc.2009-0370
10.3945/ajcn.2009.28293
10.1038/ncb839
10.1152/ajpgi.00030.2014
10.2337/dc15-S005
10.1002/jcb.22349
10.1016/j.exger.2015.06.008
10.1002/ijc.23515
10.2337/db07-0887
10.1002/acr.21796
10.1097/MCO.0b013e328312c37d
10.1111/j.1530-0277.2008.00637.x
10.1002/oby.20943
10.1111/j.1463-1326.2012.01582.x
10.1210/jc.2011-0435
10.4172/2165-7904.1000101
ContentType Journal Article
Copyright Copyright © 2015 the American Physiological Society.
Copyright American Physiological Society Oct 15, 2015
Copyright © 2015 the American Physiological Society 2015 American Physiological Society
Copyright_xml – notice: Copyright © 2015 the American Physiological Society.
– notice: Copyright American Physiological Society Oct 15, 2015
– notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1152/ajpregu.00285.2015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1490
EndPage R863
ExternalDocumentID PMC4666944
3843470801
26269521
10_1152_ajpregu_00285_2015
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: PHS HHS
  grantid: ULRR029879
– fundername: NIH CTSA
  grantid: ULRR029879
– fundername: The American Diabetes Association Research Foundation
  grantid: Junior Faculty
GroupedDBID 23M
2WC
39C
4.4
5GY
5VS
6J9
AAFWJ
AAYXX
ACIWK
ACPRK
ADBBV
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
CITATION
EBS
EJD
EMOBN
F5P
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c316t-fa17a8c6ec3ef227d5e74f04a7e03e9df70b39e945a6a48674731ea272e18d833
ISSN 0363-6119
1522-1490
IngestDate Thu Aug 21 13:59:43 EDT 2025
Fri Jul 11 14:26:11 EDT 2025
Mon Jun 30 08:35:30 EDT 2025
Thu Apr 03 07:04:54 EDT 2025
Thu Apr 24 23:05:38 EDT 2025
Tue Jul 01 03:08:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords mTOR
glucocorticoid
signaling
insulin resistance
Language English
License Copyright © 2015 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c316t-fa17a8c6ec3ef227d5e74f04a7e03e9df70b39e945a6a48674731ea272e18d833
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 26269521
PQID 1725046954
PQPubID 48263
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4666944
proquest_miscellaneous_1722928329
proquest_journals_1725046954
pubmed_primary_26269521
crossref_citationtrail_10_1152_ajpregu_00285_2015
crossref_primary_10_1152_ajpregu_00285_2015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-15
PublicationDateYYYYMMDD 2015-10-15
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationTitle American journal of physiology. Regulatory, integrative and comparative physiology
PublicationTitleAlternate Am J Physiol Regul Integr Comp Physiol
PublicationYear 2015
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B69
B26
B27
B28
B29
Wang Z (B76) 2003; 278
B70
B71
B72
B73
B30
B74
B31
B75
B32
B33
B77
B34
B78
B35
B79
B36
B37
B38
B39
B1
B2
B3
B4
B5
B7
B8
B9
B80
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
Ogden CL (B54) 2012; 82
B50
B51
Bergstom J (B6) 1962; 68
B52
B53
B10
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
B60
B61
B62
B63
References_xml – ident: B31
  doi: 10.1016/j.bbrc.2013.12.023
– ident: B14
  doi: 10.1016/j.cellsig.2013.08.038
– volume: 278
  year: 2003
  ident: B76
  publication-title: J Biol Chem
– ident: B79
  doi: 10.1152/japplphysiol.01350.2013
– ident: B11
  doi: 10.1093/ajcn/82.2.355
– ident: B23
  doi: 10.1016/S1097-2765(02)00706-2
– ident: B35
  doi: 10.1074/jbc.M706643200
– ident: B62
  doi: 10.1074/jbc.M109.047688
– ident: B63
  doi: 10.1074/jbc.M109.047688
– ident: B1
  doi: 10.1530/EJE-11-0053
– ident: B64
  doi: 10.1677/JOE-09-0202
– ident: B21
  doi: 10.1038/nature14190
– ident: B27
  doi: 10.1111/j.1399-543X.2004.00071.x
– ident: B30
  doi: 10.1210/jc.2009-1101
– ident: B38
  doi: 10.1016/j.bbrc.2011.08.017
– ident: B42
  doi: 10.1021/bi047574r
– ident: B33
  doi: 10.1152/ajpendo.00409.2012
– ident: B17
  doi: 10.1152/ajpregu.00337.2010
– ident: B46
  doi: 10.1016/j.exger.2015.02.015
– ident: B72
  doi: 10.1210/en.2004-0777
– ident: B29
  doi: 10.1152/ajpendo.00221.2011
– ident: B18
  doi: 10.1152/ajpregu.00337.2010
– ident: B49
  doi: 10.1152/ajpendo.00052.2008
– ident: B16
  doi: 10.1038/oby.2011.240
– ident: B68
  doi: 10.1371/journal.pone.0010805
– ident: B47
  doi: 10.3945/jn.108.099846
– ident: B50
  doi: 10.1016/j.cmet.2012.04.005
– ident: B13
  doi: 10.1126/scisignal.2005103
– ident: B28
  doi: 10.2337/db08-1228
– ident: B37
  doi: 10.1152/ajpendo.2001.281.6.E1137
– ident: B80
  doi: 10.1111/dme.12184
– ident: B43
  doi: 10.1152/ajpendo.1996.270.2.E273
– ident: B10
  doi: 10.1093/gerona/61.2.156
– ident: B41
  doi: 10.1172/JCI29528
– ident: B7
  doi: 10.1101/gad.1256804
– ident: B53
  doi: 10.1096/fj.12-224006
– ident: B8
  doi: 10.1038/nsmb.1564
– ident: B44
  doi: 10.1016/j.cell.2005.02.031
– ident: B74
  doi: 10.1016/j.nut.2010.07.016
– volume: 82
  year: 2012
  ident: B54
  publication-title: NCHS Data Brief
– ident: B71
  doi: 10.1016/j.clnu.2011.02.009
– ident: B75
  doi: 10.1074/jbc.M610023200
– ident: B60
  doi: 10.1038/ncb840
– ident: B22
  doi: 10.1038/oby.2009.49
– ident: B66
  doi: 10.1128/MCB.25.14.5834-5845.2005
– ident: B5
  doi: 10.1002/j.1460-2075.1996.tb00398.x
– ident: B26
  doi: 10.1101/gad.901101
– ident: B55
  doi: 10.2119/molmed.2010.00023
– ident: B40
  doi: 10.1016/j.cell.2012.03.017
– ident: B73
  doi: 10.1038/nature02866
– ident: B77
  doi: 10.1113/jphysiol.2002.036673
– ident: B4
  doi: 10.1017/S0029665112000754
– ident: B56
  doi: 10.1002/acr.22346
– volume: 68
  start-page: 1
  year: 1962
  ident: B6
  publication-title: Scan J Clin Lab Invest
– ident: B78
  doi: 10.1152/ajpendo.00397.2004
– ident: B65
  doi: 10.1128/MCB.22.7.2283-2293.2002
– ident: B34
  doi: 10.1249/MSS.0b013e318228bf85
– ident: B20
  doi: 10.1016/j.bbrc.2014.10.032
– ident: B51
  doi: 10.1016/j.bbrc.2011.01.078
– ident: B24
  doi: 10.1152/ajpregu.00550.2009
– ident: B36
  doi: 10.1152/ajpcell.1997.272.2.C754
– ident: B48
  doi: 10.1158/1541-7786.MCR-14-0343
– ident: B15
  doi: 10.1101/gad.1617608
– ident: B12
  doi: 10.1172/JCI109394
– ident: B3
  doi: 10.1210/jc.2009-0370
– ident: B67
  doi: 10.3945/ajcn.2009.28293
– ident: B32
  doi: 10.1038/ncb839
– ident: B45
  doi: 10.1152/ajpgi.00030.2014
– ident: B2
  doi: 10.2337/dc15-S005
– ident: B25
  doi: 10.1002/jcb.22349
– ident: B52
  doi: 10.1016/j.exger.2015.06.008
– ident: B61
  doi: 10.1002/ijc.23515
– ident: B59
  doi: 10.2337/db07-0887
– ident: B57
  doi: 10.1002/acr.21796
– ident: B70
  doi: 10.1097/MCO.0b013e328312c37d
– ident: B39
  doi: 10.1111/j.1530-0277.2008.00637.x
– ident: B9
  doi: 10.1002/oby.20943
– ident: B58
  doi: 10.1111/j.1463-1326.2012.01582.x
– ident: B69
  doi: 10.1210/jc.2011-0435
– ident: B19
  doi: 10.4172/2165-7904.1000101
SSID ssj0004343
Score 2.336394
Snippet The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage R855
SubjectTerms Adult
Case-Control Studies
Diabetes
Diabetes Mellitus, Type 2 - metabolism
Female
Glucose
Humans
Insulin
Insulin - pharmacology
Male
Mechanistic Target of Rapamycin Complex 1
Middle Aged
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Musculoskeletal system
Obesity
Obesity, Diabetes and Energy Homeostasis
Phosphorylation
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Title Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics
URI https://www.ncbi.nlm.nih.gov/pubmed/26269521
https://www.proquest.com/docview/1725046954
https://www.proquest.com/docview/1722928329
https://pubmed.ncbi.nlm.nih.gov/PMC4666944
Volume 309
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCgOVRWJCREJcqS_yK62PVXbRaxKt0pb1FTuKwPJpWbXqAP8NfZWzHadoCAqQqjeJHJH8Te2Y88xmhZyTLhS4zZnlbdWQ5paIskyLiiRFSlZQYYx36r98kZxf8_FJc9no_OlFL6zo7zr__Mq_kf1CFZ4CrzZL9B2TbTuEB3AO-cAWE4fpXGI8ys4S1ph5MTk9OSDSbvp2MyWDpw149d0OINYff6gssMTb3cbZeQUc-s2TadcGGyPfASht2czr0Es4T4lzxxwCNO8d-7nfiA_GEDUVqkuVaXvFNq10_j9_0d5H1g9YPDVr1R--YHdsQgE2ggb6azdfeE54Zs-yUeM_7OczvWRP33bgyiKNA9cmcx6aZfsE0Bpst7s7PLFYdQRx2ZtvJ0FP87i8DwtLK6s-LJQyEi5UVNopvqzJAuZg5waBg1CnhE7V3yLdD0TV0nYIdYo_IePW-Q0fPOAuZWIK-2H-h5ZpuuthWfPasmd2g3I6WM72FbjbmCR55WbuNeqa6gw5HFaA8-4af43ctkIfoQxA_3BU_3Iofrue4ET_4x0H8sBc_bMUPW_HDFLfidxddvDydjs-i5oyOKGckqaNSE6mHeWJyZkpKZSGM5GXMtTQxM6ooZZwxZRQXOtGW3ZFLRoymkhoyLIaM3UMH1bwyDxAueGl4XMrMFJIrUD2LhBNoyhKlClBb-4iEAUzzhsDenqPyNXWGrKBpM_6pG__Ujn8fDdo2C0_f8sfaRwGXtPmyVilo-MI6kQTvo6dtMUzCdmdNV2a-dnWosod-qT6672FsXxfw7yO5BXBbwRK8b5dUn64c0TtPkkRx_vC3fT5CNzbf0RE6qJdr8xiU5Dp74gT1J2H4v3E
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aberrant+REDD1-mTORC1+responses+to+insulin+in+skeletal+muscle+from+Type+2+diabetics&rft.jtitle=American+journal+of+physiology.+Regulatory%2C+integrative+and+comparative+physiology&rft.au=Williamson%2C+David+L&rft.au=Dungan%2C+Cory+M&rft.au=Mahmoud%2C+Abeer+M&rft.au=Mey%2C+Jacob+T&rft.date=2015-10-15&rft.eissn=1522-1490&rft.volume=309&rft.issue=8&rft.spage=R855&rft_id=info:doi/10.1152%2Fajpregu.00285.2015&rft_id=info%3Apmid%2F26269521&rft.externalDocID=26269521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6119&client=summon