Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h...
Saved in:
Published in | American journal of physiology. Regulatory, integrative and comparative physiology Vol. 309; no. 8; pp. R855 - R863 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
15.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m
−2
·min
−1
)-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation ( P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin ( P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower ( P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher ( P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower ( P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals. |
---|---|
AbstractList | The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU-m...-min...)-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals. (ProQuest: ... denotes formulae/symbols omitted.) The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals. The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m −2 ·min −1 )-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation ( P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin ( P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower ( P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher ( P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower ( P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals. The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals. The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m −2 ·min −1 )-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation ( P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin ( P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower ( P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher ( P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower ( P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals. |
Author | Mey, Jacob T. Haus, Jacob M. Blackburn, Brian K. Williamson, David L. Dungan, Cory M. Mahmoud, Abeer M. |
Author_xml | – sequence: 1 givenname: David L. surname: Williamson fullname: Williamson, David L. organization: Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and – sequence: 2 givenname: Cory M. surname: Dungan fullname: Dungan, Cory M. organization: Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and – sequence: 3 givenname: Abeer M. surname: Mahmoud fullname: Mahmoud, Abeer M. organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois – sequence: 4 givenname: Jacob T. surname: Mey fullname: Mey, Jacob T. organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois – sequence: 5 givenname: Brian K. surname: Blackburn fullname: Blackburn, Brian K. organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois – sequence: 6 givenname: Jacob M. surname: Haus fullname: Haus, Jacob M. organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26269521$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFL8ABWeLCJYv_xY4vSNW20EqVKpXlbHmTSfHi2MF2KvXbk9Atgh44zWF-7-nNvBN0FGIAhN5Ssqa0Zh_tfkxwN60JYU29ZoTWL9BqXrCKCk2O0IpwyStJqT5GJznvCSGCC_4KHTPJpK4ZXaGvZztIyYaCby_Oz2k1bG9uNxQnyGMMGTIuEbuQJ-_CPHH-AR6K9XiYcusB9ykOePswAma4c3YHxbX5NXrZW5_hzWGeom-fL7aby-r65svV5uy6ajmVpeotVbZpJbQcesZUV4MSPRFWAeGgu16RHdegRW2lFY1UQnEKlikGtOkazk_Rp0ffcdoN0LUQSrLejMkNNj2YaJ35dxPcd3MX742QUmohZoMPB4MUf06QixlcbsF7GyBO2VDFmGYNZ3pG3z9D93FKYT5voWoi5n8uhu_-TvQnytO_Z6B5BNoUc07Qm9YVW1xcAjpvKDFLteZQrfldrVmqnaXsmfTJ_T-iX1MeqF0 |
CODEN | AJPRDO |
CitedBy_id | crossref_primary_10_1096_fj_201901799RR crossref_primary_10_1091_mbc_E17_01_0049 crossref_primary_10_1152_ajpendo_00146_2017 crossref_primary_10_2337_dbi24_0013 crossref_primary_10_14814_phy2_14042 crossref_primary_10_1152_ajpcell_00340_2020 crossref_primary_10_14814_phy2_12895 crossref_primary_10_1016_j_ebiom_2018_09_051 crossref_primary_10_3390_nu8010047 crossref_primary_10_1038_s41467_022_34110_1 crossref_primary_10_2139_ssrn_4061018 crossref_primary_10_1016_j_nutres_2018_03_013 crossref_primary_10_1152_ajpregu_00159_2017 crossref_primary_10_1249_MSS_0000000000001395 crossref_primary_10_3389_fmed_2024_1471642 crossref_primary_10_1016_j_tem_2016_08_005 crossref_primary_10_1017_jns_2023_37 crossref_primary_10_3892_mmr_2017_6322 crossref_primary_10_1038_s12276_023_01056_3 crossref_primary_10_1016_j_bbrc_2016_11_159 crossref_primary_10_1016_j_biopha_2024_117122 crossref_primary_10_1016_j_exger_2020_110964 crossref_primary_10_3389_fcvm_2018_00117 crossref_primary_10_3389_fnut_2021_615849 crossref_primary_10_1152_ajpendo_00059_2016 crossref_primary_10_1016_j_metop_2023_100264 crossref_primary_10_14814_phy2_14011 crossref_primary_10_1038_s41467_021_22068_5 crossref_primary_10_2174_1389450123666220111115528 crossref_primary_10_3389_fnut_2019_00087 crossref_primary_10_1152_ajpendo_00120_2017 crossref_primary_10_1111_cas_14110 crossref_primary_10_1007_s11745_016_4168_3 crossref_primary_10_3389_fphys_2020_613648 crossref_primary_10_3390_ijms19072043 crossref_primary_10_1007_s12257_021_0140_z crossref_primary_10_2337_db22_0402 |
Cites_doi | 10.1016/j.bbrc.2013.12.023 10.1016/j.cellsig.2013.08.038 10.1152/japplphysiol.01350.2013 10.1093/ajcn/82.2.355 10.1016/S1097-2765(02)00706-2 10.1074/jbc.M706643200 10.1074/jbc.M109.047688 10.1530/EJE-11-0053 10.1677/JOE-09-0202 10.1038/nature14190 10.1111/j.1399-543X.2004.00071.x 10.1210/jc.2009-1101 10.1016/j.bbrc.2011.08.017 10.1021/bi047574r 10.1152/ajpendo.00409.2012 10.1152/ajpregu.00337.2010 10.1016/j.exger.2015.02.015 10.1210/en.2004-0777 10.1152/ajpendo.00221.2011 10.1152/ajpendo.00052.2008 10.1038/oby.2011.240 10.1371/journal.pone.0010805 10.3945/jn.108.099846 10.1016/j.cmet.2012.04.005 10.1126/scisignal.2005103 10.2337/db08-1228 10.1152/ajpendo.2001.281.6.E1137 10.1111/dme.12184 10.1152/ajpendo.1996.270.2.E273 10.1093/gerona/61.2.156 10.1172/JCI29528 10.1101/gad.1256804 10.1096/fj.12-224006 10.1038/nsmb.1564 10.1016/j.cell.2005.02.031 10.1016/j.nut.2010.07.016 10.1016/j.clnu.2011.02.009 10.1074/jbc.M610023200 10.1038/ncb840 10.1038/oby.2009.49 10.1128/MCB.25.14.5834-5845.2005 10.1002/j.1460-2075.1996.tb00398.x 10.1101/gad.901101 10.2119/molmed.2010.00023 10.1016/j.cell.2012.03.017 10.1038/nature02866 10.1113/jphysiol.2002.036673 10.1017/S0029665112000754 10.1002/acr.22346 10.1152/ajpendo.00397.2004 10.1128/MCB.22.7.2283-2293.2002 10.1249/MSS.0b013e318228bf85 10.1016/j.bbrc.2014.10.032 10.1016/j.bbrc.2011.01.078 10.1152/ajpregu.00550.2009 10.1152/ajpcell.1997.272.2.C754 10.1158/1541-7786.MCR-14-0343 10.1101/gad.1617608 10.1172/JCI109394 10.1210/jc.2009-0370 10.3945/ajcn.2009.28293 10.1038/ncb839 10.1152/ajpgi.00030.2014 10.2337/dc15-S005 10.1002/jcb.22349 10.1016/j.exger.2015.06.008 10.1002/ijc.23515 10.2337/db07-0887 10.1002/acr.21796 10.1097/MCO.0b013e328312c37d 10.1111/j.1530-0277.2008.00637.x 10.1002/oby.20943 10.1111/j.1463-1326.2012.01582.x 10.1210/jc.2011-0435 10.4172/2165-7904.1000101 |
ContentType | Journal Article |
Copyright | Copyright © 2015 the American Physiological Society. Copyright American Physiological Society Oct 15, 2015 Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
Copyright_xml | – notice: Copyright © 2015 the American Physiological Society. – notice: Copyright American Physiological Society Oct 15, 2015 – notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1152/ajpregu.00285.2015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1490 |
EndPage | R863 |
ExternalDocumentID | PMC4666944 3843470801 26269521 10_1152_ajpregu_00285_2015 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: PHS HHS grantid: ULRR029879 – fundername: NIH CTSA grantid: ULRR029879 – fundername: The American Diabetes Association Research Foundation grantid: Junior Faculty |
GroupedDBID | 23M 2WC 39C 4.4 5GY 5VS 6J9 AAFWJ AAYXX ACIWK ACPRK ADBBV AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW CITATION EBS EJD EMOBN F5P H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 UKR W8F WH7 WOQ XSW YSK ~02 CGR CUY CVF ECM EIF NPM 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c316t-fa17a8c6ec3ef227d5e74f04a7e03e9df70b39e945a6a48674731ea272e18d833 |
ISSN | 0363-6119 1522-1490 |
IngestDate | Thu Aug 21 13:59:43 EDT 2025 Fri Jul 11 14:26:11 EDT 2025 Mon Jun 30 08:35:30 EDT 2025 Thu Apr 03 07:04:54 EDT 2025 Thu Apr 24 23:05:38 EDT 2025 Tue Jul 01 03:08:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | mTOR glucocorticoid signaling insulin resistance |
Language | English |
License | Copyright © 2015 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c316t-fa17a8c6ec3ef227d5e74f04a7e03e9df70b39e945a6a48674731ea272e18d833 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 26269521 |
PQID | 1725046954 |
PQPubID | 48263 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4666944 proquest_miscellaneous_1722928329 proquest_journals_1725046954 pubmed_primary_26269521 crossref_citationtrail_10_1152_ajpregu_00285_2015 crossref_primary_10_1152_ajpregu_00285_2015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-15 |
PublicationDateYYYYMMDD | 2015-10-15 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationTitle | American journal of physiology. Regulatory, integrative and comparative physiology |
PublicationTitleAlternate | Am J Physiol Regul Integr Comp Physiol |
PublicationYear | 2015 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B64 B21 B65 B22 B66 B23 B67 B24 B68 B25 B69 B26 B27 B28 B29 Wang Z (B76) 2003; 278 B70 B71 B72 B73 B30 B74 B31 B75 B32 B33 B77 B34 B78 B35 B79 B36 B37 B38 B39 B1 B2 B3 B4 B5 B7 B8 B9 B80 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 Ogden CL (B54) 2012; 82 B50 B51 Bergstom J (B6) 1962; 68 B52 B53 B10 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 B60 B61 B62 B63 |
References_xml | – ident: B31 doi: 10.1016/j.bbrc.2013.12.023 – ident: B14 doi: 10.1016/j.cellsig.2013.08.038 – volume: 278 year: 2003 ident: B76 publication-title: J Biol Chem – ident: B79 doi: 10.1152/japplphysiol.01350.2013 – ident: B11 doi: 10.1093/ajcn/82.2.355 – ident: B23 doi: 10.1016/S1097-2765(02)00706-2 – ident: B35 doi: 10.1074/jbc.M706643200 – ident: B62 doi: 10.1074/jbc.M109.047688 – ident: B63 doi: 10.1074/jbc.M109.047688 – ident: B1 doi: 10.1530/EJE-11-0053 – ident: B64 doi: 10.1677/JOE-09-0202 – ident: B21 doi: 10.1038/nature14190 – ident: B27 doi: 10.1111/j.1399-543X.2004.00071.x – ident: B30 doi: 10.1210/jc.2009-1101 – ident: B38 doi: 10.1016/j.bbrc.2011.08.017 – ident: B42 doi: 10.1021/bi047574r – ident: B33 doi: 10.1152/ajpendo.00409.2012 – ident: B17 doi: 10.1152/ajpregu.00337.2010 – ident: B46 doi: 10.1016/j.exger.2015.02.015 – ident: B72 doi: 10.1210/en.2004-0777 – ident: B29 doi: 10.1152/ajpendo.00221.2011 – ident: B18 doi: 10.1152/ajpregu.00337.2010 – ident: B49 doi: 10.1152/ajpendo.00052.2008 – ident: B16 doi: 10.1038/oby.2011.240 – ident: B68 doi: 10.1371/journal.pone.0010805 – ident: B47 doi: 10.3945/jn.108.099846 – ident: B50 doi: 10.1016/j.cmet.2012.04.005 – ident: B13 doi: 10.1126/scisignal.2005103 – ident: B28 doi: 10.2337/db08-1228 – ident: B37 doi: 10.1152/ajpendo.2001.281.6.E1137 – ident: B80 doi: 10.1111/dme.12184 – ident: B43 doi: 10.1152/ajpendo.1996.270.2.E273 – ident: B10 doi: 10.1093/gerona/61.2.156 – ident: B41 doi: 10.1172/JCI29528 – ident: B7 doi: 10.1101/gad.1256804 – ident: B53 doi: 10.1096/fj.12-224006 – ident: B8 doi: 10.1038/nsmb.1564 – ident: B44 doi: 10.1016/j.cell.2005.02.031 – ident: B74 doi: 10.1016/j.nut.2010.07.016 – volume: 82 year: 2012 ident: B54 publication-title: NCHS Data Brief – ident: B71 doi: 10.1016/j.clnu.2011.02.009 – ident: B75 doi: 10.1074/jbc.M610023200 – ident: B60 doi: 10.1038/ncb840 – ident: B22 doi: 10.1038/oby.2009.49 – ident: B66 doi: 10.1128/MCB.25.14.5834-5845.2005 – ident: B5 doi: 10.1002/j.1460-2075.1996.tb00398.x – ident: B26 doi: 10.1101/gad.901101 – ident: B55 doi: 10.2119/molmed.2010.00023 – ident: B40 doi: 10.1016/j.cell.2012.03.017 – ident: B73 doi: 10.1038/nature02866 – ident: B77 doi: 10.1113/jphysiol.2002.036673 – ident: B4 doi: 10.1017/S0029665112000754 – ident: B56 doi: 10.1002/acr.22346 – volume: 68 start-page: 1 year: 1962 ident: B6 publication-title: Scan J Clin Lab Invest – ident: B78 doi: 10.1152/ajpendo.00397.2004 – ident: B65 doi: 10.1128/MCB.22.7.2283-2293.2002 – ident: B34 doi: 10.1249/MSS.0b013e318228bf85 – ident: B20 doi: 10.1016/j.bbrc.2014.10.032 – ident: B51 doi: 10.1016/j.bbrc.2011.01.078 – ident: B24 doi: 10.1152/ajpregu.00550.2009 – ident: B36 doi: 10.1152/ajpcell.1997.272.2.C754 – ident: B48 doi: 10.1158/1541-7786.MCR-14-0343 – ident: B15 doi: 10.1101/gad.1617608 – ident: B12 doi: 10.1172/JCI109394 – ident: B3 doi: 10.1210/jc.2009-0370 – ident: B67 doi: 10.3945/ajcn.2009.28293 – ident: B32 doi: 10.1038/ncb839 – ident: B45 doi: 10.1152/ajpgi.00030.2014 – ident: B2 doi: 10.2337/dc15-S005 – ident: B25 doi: 10.1002/jcb.22349 – ident: B52 doi: 10.1016/j.exger.2015.06.008 – ident: B61 doi: 10.1002/ijc.23515 – ident: B59 doi: 10.2337/db07-0887 – ident: B57 doi: 10.1002/acr.21796 – ident: B70 doi: 10.1097/MCO.0b013e328312c37d – ident: B39 doi: 10.1111/j.1530-0277.2008.00637.x – ident: B9 doi: 10.1002/oby.20943 – ident: B58 doi: 10.1111/j.1463-1326.2012.01582.x – ident: B69 doi: 10.1210/jc.2011-0435 – ident: B19 doi: 10.4172/2165-7904.1000101 |
SSID | ssj0004343 |
Score | 2.336394 |
Snippet | The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | R855 |
SubjectTerms | Adult Case-Control Studies Diabetes Diabetes Mellitus, Type 2 - metabolism Female Glucose Humans Insulin Insulin - pharmacology Male Mechanistic Target of Rapamycin Complex 1 Middle Aged Multiprotein Complexes - genetics Multiprotein Complexes - metabolism Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism Musculoskeletal system Obesity Obesity, Diabetes and Energy Homeostasis Phosphorylation TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Transcription Factors - genetics Transcription Factors - metabolism |
Title | Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26269521 https://www.proquest.com/docview/1725046954 https://www.proquest.com/docview/1722928329 https://pubmed.ncbi.nlm.nih.gov/PMC4666944 |
Volume | 309 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCgOVRWJCREJcqS_yK62PVXbRaxKt0pb1FTuKwPJpWbXqAP8NfZWzHadoCAqQqjeJHJH8Te2Y88xmhZyTLhS4zZnlbdWQ5paIskyLiiRFSlZQYYx36r98kZxf8_FJc9no_OlFL6zo7zr__Mq_kf1CFZ4CrzZL9B2TbTuEB3AO-cAWE4fpXGI8ys4S1ph5MTk9OSDSbvp2MyWDpw149d0OINYff6gssMTb3cbZeQUc-s2TadcGGyPfASht2czr0Es4T4lzxxwCNO8d-7nfiA_GEDUVqkuVaXvFNq10_j9_0d5H1g9YPDVr1R--YHdsQgE2ggb6azdfeE54Zs-yUeM_7OczvWRP33bgyiKNA9cmcx6aZfsE0Bpst7s7PLFYdQRx2ZtvJ0FP87i8DwtLK6s-LJQyEi5UVNopvqzJAuZg5waBg1CnhE7V3yLdD0TV0nYIdYo_IePW-Q0fPOAuZWIK-2H-h5ZpuuthWfPasmd2g3I6WM72FbjbmCR55WbuNeqa6gw5HFaA8-4af43ctkIfoQxA_3BU_3Iofrue4ET_4x0H8sBc_bMUPW_HDFLfidxddvDydjs-i5oyOKGckqaNSE6mHeWJyZkpKZSGM5GXMtTQxM6ooZZwxZRQXOtGW3ZFLRoymkhoyLIaM3UMH1bwyDxAueGl4XMrMFJIrUD2LhBNoyhKlClBb-4iEAUzzhsDenqPyNXWGrKBpM_6pG__Ujn8fDdo2C0_f8sfaRwGXtPmyVilo-MI6kQTvo6dtMUzCdmdNV2a-dnWosod-qT6672FsXxfw7yO5BXBbwRK8b5dUn64c0TtPkkRx_vC3fT5CNzbf0RE6qJdr8xiU5Dp74gT1J2H4v3E |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aberrant+REDD1-mTORC1+responses+to+insulin+in+skeletal+muscle+from+Type+2+diabetics&rft.jtitle=American+journal+of+physiology.+Regulatory%2C+integrative+and+comparative+physiology&rft.au=Williamson%2C+David+L&rft.au=Dungan%2C+Cory+M&rft.au=Mahmoud%2C+Abeer+M&rft.au=Mey%2C+Jacob+T&rft.date=2015-10-15&rft.eissn=1522-1490&rft.volume=309&rft.issue=8&rft.spage=R855&rft_id=info:doi/10.1152%2Fajpregu.00285.2015&rft_id=info%3Apmid%2F26269521&rft.externalDocID=26269521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6119&client=summon |