Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h...
Saved in:
Published in | American journal of physiology. Regulatory, integrative and comparative physiology Vol. 309; no. 8; pp. R855 - R863 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
15.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m
−2
·min
−1
)-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation ( P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin ( P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower ( P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher ( P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower ( P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0363-6119 1522-1490 1522-1490 |
DOI: | 10.1152/ajpregu.00285.2015 |