Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics

The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Regulatory, integrative and comparative physiology Vol. 309; no. 8; pp. R855 - R863
Main Authors Williamson, David L., Dungan, Cory M., Mahmoud, Abeer M., Mey, Jacob T., Blackburn, Brian K., Haus, Jacob M.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 15.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m −2 ·min −1 )-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation ( P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin ( P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower ( P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher ( P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower ( P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0363-6119
1522-1490
1522-1490
DOI:10.1152/ajpregu.00285.2015