Solvothermal tuning of photoluminescent graphene quantum dots: from preparation to photoluminescence mechanism
Solvothermal synthesis was employed to tune the surface states of graphene quantum dots (GQDs). Two series of GQDs with the particle sizes from 2.6 to 4.5 nm were prepared as follows: (I) GQDs with the same size but different oxygen degrees; (II) GQDs with different core sizes but the similar surfac...
Saved in:
Published in | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology Vol. 20; no. 2; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Solvothermal synthesis was employed to tune the surface states of graphene quantum dots (GQDs). Two series of GQDs with the particle sizes from 2.6 to 4.5 nm were prepared as follows: (I) GQDs with the same size but different oxygen degrees; (II) GQDs with different core sizes but the similar surface chemistry. Both the large sizes and the high surface oxidation degrees led to the redshift photoluminescence (PL) of GQDs. Electrochemiluminescence (ECL) spectra from two series of GQDs were all in accordance with their PL spectra, respectively, which provided good evidence for the conjugated structures in GQDs responsible for PL.
Graphical abstract
ᅟ |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-018-4123-8 |