Anomalous pressure-dependence in surface-modified silicon-derived nanoparticles

Surfaces can significantly alter the optical properties of nanomaterials, but they are difficult to control and their roles are hard to understand in highly reactive materials such as silicon nanomaterials. In this work, we investigate the role of the surface in controlling the optical transitions i...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 14; no. 12; pp. 4748 - 4753
Main Authors Li, Qi, Parakh, Abhinav, Jin, Rongchao, Gu, X. Wendy
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Surfaces can significantly alter the optical properties of nanomaterials, but they are difficult to control and their roles are hard to understand in highly reactive materials such as silicon nanomaterials. In this work, we investigate the role of the surface in controlling the optical transitions in highly luminescent silicon-derived nanoparticles. By combining high-pressure and low-temperature experiments, we experimentally correlate the anomalously intense and narrow transitions in the UV range with the surface oxides, while the visible transition and the photoluminescence (PL) are verified to originate from the Si-ligand charge transfer band. We find that the high-pressure absorption and PL depends on the rigidity of the surface ligand. This indicates that the surface plays a dominant role on the optical properties of these silicon-derived nanoparticles, and is different than other semiconductor nanomaterials, in which pressure-dependent optical transitions depend on lattice strain or phase transformations. This work presents a comprehensive understanding of the optical transitions and the effect of surface ligands and surface oxidation in these highly luminescent Si-derived nanoparticles. The new insight into the oxidation-activated and ligand-mediated transitions, and the pressure-dependent PL may help with engineering the band structure of other highly-reactive optical nanomaterials.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-021-3418-3