The compressive-shear fracture strength of rock containing water based on Druker-Prager failure criterion

The stresses at the tips of the compressive-sheared cracks were calculated by applying the superposition principle. Then, the principal stresses at the tips of the compressive-shear crack were obtained. According to the Druker-Prager criterion, a fracture criterion for the compressive-shear crack, v...

Full description

Saved in:
Bibliographic Details
Published inArabian journal of geosciences Vol. 12; no. 15; pp. 1 - 8
Main Authors Zhao, Yanlin, Wang, Yixian, Tang, Liming
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The stresses at the tips of the compressive-sheared cracks were calculated by applying the superposition principle. Then, the principal stresses at the tips of the compressive-shear crack were obtained. According to the Druker-Prager criterion, a fracture criterion for the compressive-shear crack, verified reasonable, was proposed. In addition, considering the influence of water, the above criterion was modified to investigate the influence of water on the stress intensity factors of cracks. The results show that the third principal stress of the main crack surface significantly increases the rock strength when the internal friction angle of the rock is lower than crack inclination angle. However, when the internal friction angle is higher than crack inclination angle, the increase of water pressure dramatically decreases the rock strength. When the internal friction angle is equal to crack inclination angle, the influences of water pressure and the third principal stress on the rock strength are the same. In addition, when crack inclination angle is lower than 30°, the third principal stress greatly influences the rock strength.
ISSN:1866-7511
1866-7538
DOI:10.1007/s12517-019-4628-1