Optical Characteristics and Distribution of Chromophoric Dissolved Organic Matter in Onega Bay (White Sea) during the Summer Season (Findings from an Expedition from June 22 to 26, 2015)

Onega Bay waters are characterized by a high content of chromophoric dissolved organic matter (CDOM). The absorbance spectra and fluorescence intensity (excitation wavelength 455 nm, emission wavelength >680 nm) were used to assess the distribution of CDOM content in water filtered through a GF/F...

Full description

Saved in:
Bibliographic Details
Published inOceanology (Washington. 1965) Vol. 58; no. 2; pp. 233 - 239
Main Authors Zaitseva, A. F., Konyukhov, I. V., Kazimirko, Yu. V., Pogosyan, S. I.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.03.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Onega Bay waters are characterized by a high content of chromophoric dissolved organic matter (CDOM). The absorbance spectra and fluorescence intensity (excitation wavelength 455 nm, emission wavelength >680 nm) were used to assess the distribution of CDOM content in water filtered through a GF/F filter. The CDOM content at different points in Onega Bay showed more than a fourfold difference, as inferred from the measured values. The CDOM content in surface waters was, as a rule, higher than in the deeper horizons. A higher CDOM content was measured near the Onega River, near the middle part of the Onega shore, and near the Pomor shore opposite the town of Belomorsk. River runoff is the major source of CDOM in Onega Bay water. The CDOM chemical composition in Onega Bay waters was heterogeneous. The ratio of the fluorescence intensity to the absorbance value was higher near the mouths of rivers and in intensive mixing zones than in water characterized by high salinity. A highly significant linear correlation ( R 2 = 0.7825) between water salinity and CDOM fluorescence intensity was demonstrated. The contribution of fluorescent compounds to river runoff CDOM is substantially higher than the contribution to the composition marine CDOM.
ISSN:0001-4370
1531-8508
DOI:10.1134/S0001437018020169