Recognizing multiple emotion from ambiguous facial expressions on mobile platforms

Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to display the human’s emotion is through facial expression analysis. This paper proposes a multiple emotion recognition system that can recogniz...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 20; no. 5; pp. 1811 - 1819
Main Authors Lee, Yong-Hwan, Han, Wuri, Kim, Youngseop
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to display the human’s emotion is through facial expression analysis. This paper proposes a multiple emotion recognition system that can recognize combinations of up to a maximum of three different emotions using an active appearance model (AAM), the proposed classification standard, and a k -nearest neighbor ( k -NN) classifier in mobile environments. AAM can take the expression of variations that are calculated by the proposed classification standard according to changes in human expressions in real time. The proposed k -NN can classify basic emotions (normal, happy, sad, angry, surprise) as well as more ambiguous emotions by combining the basic emotions in real time, and each recognized emotion that can be subdivided has strength. Whereas most previous methods of emotion recognition recognize various kind of a single emotion, this paper recognizes various emotions with a combination of the five basic emotions. To be easily understood, the recognized result is presented in three ways on a mobile camera screen. The result of the experiment was an average 85 % recognition rate and a 40 % performance showed optimized emotions. The implemented system can be represented by one of the example for augmented reality on displaying combination of real face video and virtual animation with user’s avatar.
AbstractList Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to display the human’s emotion is through facial expression analysis. This paper proposes a multiple emotion recognition system that can recognize combinations of up to a maximum of three different emotions using an active appearance model (AAM), the proposed classification standard, and a k-nearest neighbor (k-NN) classifier in mobile environments. AAM can take the expression of variations that are calculated by the proposed classification standard according to changes in human expressions in real time. The proposed k-NN can classify basic emotions (normal, happy, sad, angry, surprise) as well as more ambiguous emotions by combining the basic emotions in real time, and each recognized emotion that can be subdivided has strength. Whereas most previous methods of emotion recognition recognize various kind of a single emotion, this paper recognizes various emotions with a combination of the five basic emotions. To be easily understood, the recognized result is presented in three ways on a mobile camera screen. The result of the experiment was an average 85 % recognition rate and a 40 % performance showed optimized emotions. The implemented system can be represented by one of the example for augmented reality on displaying combination of real face video and virtual animation with user’s avatar.
Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to display the human’s emotion is through facial expression analysis. This paper proposes a multiple emotion recognition system that can recognize combinations of up to a maximum of three different emotions using an active appearance model (AAM), the proposed classification standard, and a k -nearest neighbor ( k -NN) classifier in mobile environments. AAM can take the expression of variations that are calculated by the proposed classification standard according to changes in human expressions in real time. The proposed k -NN can classify basic emotions (normal, happy, sad, angry, surprise) as well as more ambiguous emotions by combining the basic emotions in real time, and each recognized emotion that can be subdivided has strength. Whereas most previous methods of emotion recognition recognize various kind of a single emotion, this paper recognizes various emotions with a combination of the five basic emotions. To be easily understood, the recognized result is presented in three ways on a mobile camera screen. The result of the experiment was an average 85 % recognition rate and a 40 % performance showed optimized emotions. The implemented system can be represented by one of the example for augmented reality on displaying combination of real face video and virtual animation with user’s avatar.
Author Lee, Yong-Hwan
Kim, Youngseop
Han, Wuri
Author_xml – sequence: 1
  givenname: Yong-Hwan
  surname: Lee
  fullname: Lee, Yong-Hwan
  organization: Far East University
– sequence: 2
  givenname: Wuri
  surname: Han
  fullname: Han, Wuri
  organization: Dankook University
– sequence: 3
  givenname: Youngseop
  surname: Kim
  fullname: Kim, Youngseop
  email: wangcho@dankook.ac.kr
  organization: Dankook University
BookMark eNp1kE1LxDAQQIOs4O7qD_BW8BydNG3aHmXxCxaERc8hzUfJ0jY1acH6681awZOnmcN7M_A2aNW7XiN0TeCWABR3ASAHwEByTFgJeD5Da5JRiousqFY_e4oLltELtAnhCJCSIqdrdDho6Zreftm-SbqpHe3Q6kR3brSuT4x3XSK62jaTm0JihLSiTfTn4HUIEQhJhDpX2-gMrRiN8124ROdGtEFf_c4ten98eNs94_3r08vufo8lJWzESkIpGTCmKMkqk2vNGMlZJiujVA5aUVUCk9QIxmhdm1TolIABLYmSZa3oFt0sdwfvPiYdRn50k-_jS55WpKiA5YxGiiyU9C4Erw0fvO2EnzkBfkrHl3Q8puOndHyOTro4IbJ9o_3f5f-lb9m7dYI
CitedBy_id crossref_primary_10_1007_s00500_016_2109_y
Cites_doi 10.1088/0954-898X_7_3_002
10.1016/j.patcog.2008.10.010
10.1162/089892902760807177
10.1016/j.image.2004.05.009
10.1049/iet-cvi.2010.0184
10.1007/s10115-007-0114-2
10.1023/A:1007977618277
10.5391/JKIIS.2009.19.6.821
10.1037/a0035246
10.1109/ICCV.2011.6126461
10.1109/IMIS.2014.24
10.1109/TPAMI.2008.52
10.1016/j.neunet.2005.03.004
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Springer-Verlag Berlin Heidelberg 2015.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Springer-Verlag Berlin Heidelberg 2015.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PQEST
PQQKQ
PQUKI
DOI 10.1007/s00500-015-1680-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 1819
ExternalDocumentID 10_1007_s00500_015_1680_y
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFKRA
AGQEE
AGRTI
AIGIU
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
H13
HCIFZ
K7-
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-dc08c6066d3149f5ee661564c9fdd50ed3d806c3fa663bbf2ae210f0ec1dc8bd3
IEDL.DBID 8FG
ISSN 1432-7643
IngestDate Thu Oct 10 22:04:21 EDT 2024
Thu Sep 12 19:02:41 EDT 2024
Sat Dec 16 12:09:47 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Nearest neighbor
Emotion recognition
Multiple facial emotion
Active appearance model
Ambiguous facial expression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-dc08c6066d3149f5ee661564c9fdd50ed3d806c3fa663bbf2ae210f0ec1dc8bd3
PQID 2917906563
PQPubID 2043697
PageCount 9
ParticipantIDs proquest_journals_2917906563
crossref_primary_10_1007_s00500_015_1680_y
springer_journals_10_1007_s00500_015_1680_y
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Penver, Atick (CR15) 1996; 7
Teijeiro-Mosquera, Alba-Castro (CR17) 2011; 5
CR3
CR6
CR7
Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou, Steinbach, Hand, Steinberg (CR18) 2008; 14
CR9
CR16
Abboud, Davoine, Dang (CR1) 2004; 19
Dailey, Garrison (CR5) 2002; 14
Yoon, Hahn (CR20) 2009; 19
Jung, Kim (CR8) 2006; 13
CR13
Black, Yacoob (CR2) 2004; 25
CR12
CR11
CR10
CR21
Padgett, Cottrell (CR14) 1997; 9
Cheon, Kim (CR4) 2008; 42
Xue, Youwei (CR19) 2006; 3
1680_CR9
MN Dailey (1680_CR5) 2002; 14
B Abboud (1680_CR1) 2004; 19
P Penver (1680_CR15) 1996; 7
1680_CR3
SU Jung (1680_CR8) 2006; 13
1680_CR10
1680_CR21
MJ Black (1680_CR2) 2004; 25
1680_CR11
1680_CR12
C Padgett (1680_CR14) 1997; 9
G Xue (1680_CR19) 2006; 3
1680_CR13
1680_CR7
1680_CR16
1680_CR6
H Yoon (1680_CR20) 2009; 19
Y Cheon (1680_CR4) 2008; 42
L Teijeiro-Mosquera (1680_CR17) 2011; 5
X Wu (1680_CR18) 2008; 14
References_xml – ident: CR21
– volume: 13
  start-page: 130
  issue: 2
  year: 2006
  end-page: 137
  ident: CR8
  article-title: New rectangle feature type selection for real-time facial expression recognition
  publication-title: J Control Automat Syst Eng
  contributor:
    fullname: Kim
– volume: 7
  start-page: 477
  year: 1996
  end-page: 500
  ident: CR15
  article-title: Local feature analysis : a general statistical theory for object representation
  publication-title: Netw Comput Neural Syst
  doi: 10.1088/0954-898X_7_3_002
  contributor:
    fullname: Atick
– volume: 3
  start-page: 16
  year: 2006
  end-page: 20
  ident: CR19
  article-title: Facial expression recognition based on the difference of statistical features
  publication-title: Int Conf Signal Process
  contributor:
    fullname: Youwei
– ident: CR3
– ident: CR16
– ident: CR12
– ident: CR13
– volume: 9
  start-page: 894
  year: 1997
  end-page: 900
  ident: CR14
  article-title: Representing face images for emotion classification
  publication-title: Proc Conf Adv Neural Inf Proc Syst
  contributor:
    fullname: Cottrell
– ident: CR10
– ident: CR11
– ident: CR9
– volume: 42
  start-page: 1340
  issue: 7
  year: 2008
  end-page: 1350
  ident: CR4
  article-title: A natural facial expression recognition using differential-AAM and k-NNS
  publication-title: Pattren Recognit
  doi: 10.1016/j.patcog.2008.10.010
  contributor:
    fullname: Kim
– volume: 14
  start-page: 1158
  year: 2002
  end-page: 1173
  ident: CR5
  article-title: Cottrell, curtis padgett, and ralph adolphs, EMPATH: a neural network that categorizes facial expressions
  publication-title: J Cogn Neurosc
  doi: 10.1162/089892902760807177
  contributor:
    fullname: Garrison
– ident: CR6
– ident: CR7
– volume: 19
  start-page: 723
  issue: 8
  year: 2004
  end-page: 740
  ident: CR1
  article-title: Facial expression recognition and synthesis based on an appearance model
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2004.05.009
  contributor:
    fullname: Dang
– volume: 5
  start-page: 348
  issue: 6
  year: 2011
  end-page: 357
  ident: CR17
  article-title: Performance of active appearance model-based pose-robust face recognition
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2010.0184
  contributor:
    fullname: Alba-Castro
– volume: 14
  start-page: 11
  issue: 1
  year: 2008
  end-page: 37
  ident: CR18
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-007-0114-2
  contributor:
    fullname: Steinberg
– volume: 25
  start-page: 23
  issue: 1
  year: 2004
  end-page: 48
  ident: CR2
  article-title: Recognizing facial expressions in image sequences using local parameterized models of image motion
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1007977618277
  contributor:
    fullname: Yacoob
– volume: 19
  start-page: 821
  issue: 6
  year: 2009
  end-page: 827
  ident: CR20
  article-title: Real-time recognition system of facial expressions using principal component of Gabor-wavelet features
  publication-title: J korean Inst Intell Syst
  doi: 10.5391/JKIIS.2009.19.6.821
  contributor:
    fullname: Hahn
– volume: 19
  start-page: 821
  issue: 6
  year: 2009
  ident: 1680_CR20
  publication-title: J korean Inst Intell Syst
  doi: 10.5391/JKIIS.2009.19.6.821
  contributor:
    fullname: H Yoon
– volume: 7
  start-page: 477
  year: 1996
  ident: 1680_CR15
  publication-title: Netw Comput Neural Syst
  doi: 10.1088/0954-898X_7_3_002
  contributor:
    fullname: P Penver
– volume: 42
  start-page: 1340
  issue: 7
  year: 2008
  ident: 1680_CR4
  publication-title: Pattren Recognit
  doi: 10.1016/j.patcog.2008.10.010
  contributor:
    fullname: Y Cheon
– volume: 19
  start-page: 723
  issue: 8
  year: 2004
  ident: 1680_CR1
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2004.05.009
  contributor:
    fullname: B Abboud
– volume: 9
  start-page: 894
  year: 1997
  ident: 1680_CR14
  publication-title: Proc Conf Adv Neural Inf Proc Syst
  contributor:
    fullname: C Padgett
– ident: 1680_CR16
  doi: 10.1037/a0035246
– ident: 1680_CR7
– ident: 1680_CR6
– volume: 25
  start-page: 23
  issue: 1
  year: 2004
  ident: 1680_CR2
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1007977618277
  contributor:
    fullname: MJ Black
– volume: 5
  start-page: 348
  issue: 6
  year: 2011
  ident: 1680_CR17
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2010.0184
  contributor:
    fullname: L Teijeiro-Mosquera
– ident: 1680_CR13
  doi: 10.1109/ICCV.2011.6126461
– volume: 14
  start-page: 11
  issue: 1
  year: 2008
  ident: 1680_CR18
  publication-title: Knowl Inf Syst
  contributor:
    fullname: X Wu
– ident: 1680_CR9
  doi: 10.1109/IMIS.2014.24
– volume: 3
  start-page: 16
  year: 2006
  ident: 1680_CR19
  publication-title: Int Conf Signal Process
  contributor:
    fullname: G Xue
– ident: 1680_CR21
  doi: 10.1109/TPAMI.2008.52
– ident: 1680_CR12
– ident: 1680_CR3
– ident: 1680_CR11
– volume: 13
  start-page: 130
  issue: 2
  year: 2006
  ident: 1680_CR8
  publication-title: J Control Automat Syst Eng
  contributor:
    fullname: SU Jung
– volume: 14
  start-page: 1158
  year: 2002
  ident: 1680_CR5
  publication-title: J Cogn Neurosc
  doi: 10.1162/089892902760807177
  contributor:
    fullname: MN Dailey
– ident: 1680_CR10
  doi: 10.1016/j.neunet.2005.03.004
SSID ssj0021753
Score 2.147433
Snippet Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1811
SubjectTerms Algorithms
Animation
Artificial Intelligence
Augmented reality
Avatars
Classification
Communications systems
Computational Intelligence
Control
Discriminant analysis
Emotion recognition
Emotions
Engineering
Focus
Mathematical Logic and Foundations
Mechatronics
Real time
Robotics
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XODAYIAYL-XACZSpa9KsPSLEQyA4ICaNU9W8EBrrJtpJbL8eZ203noepp6pRpMZO_Dm2PwOceCKU0ghLGW8ryrUIadKWlnKBj6tdFJGrRr5_EDcdftsNukvgz64u0l6zikhOD-pZrZtjKnE5VAFtidCj42VYLetOV8-vn-8uZ25WyT2JQACxIxrcKpb51yTfrdEcYv6Iik6NzVWtKADMphyFLsek1xzlsqkmvxkcF_iPTdgosSc5L5RlC5ZMWoda1deBlNu8DutfSAq34fGxyDGa4Bup8g-JKdr_EFeeQpK-fH0ZDUYZsYm7gifmo8yvTTOCg_oDiYcPGb4lucPI2Q50ri6fLm5o2YmBKtYSOdXKC5VzdTRDj8oGxqBZDwRXkdU68IxmOvSEYjZBACOl9RODrqT1jGppFUrNdmElHaRmD4jPWGB5xNDvUdxKHukw8v0Wtz4qh2nzBpxWEomHBeFGPKNWnq5djGsXu7WLxw04rGQWl3svi_3IsY4hTmUNOKtkMP_872T7C40-gDXETqLIfTyElfx9ZI4Qn-TyuFTIT-nJ3QU
  priority: 102
  providerName: Springer Nature
Title Recognizing multiple emotion from ambiguous facial expressions on mobile platforms
URI https://link.springer.com/article/10.1007/s00500-015-1680-y
https://www.proquest.com/docview/2917906563
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFB60vXhxF6u1zMGTMphkJpPkJFW6oFikWKinkNlEsIu2Beuv900yaVFQcggk4R3eZOZ931sROvd4LITmhlAWScIUj0kWCUMYh8vWLvLEViM_9Hh3wO6G4dA53GYurbI8E_ODWk2k9ZFfBYntJQXog15P34mdGmWjq26Exiaq-kEUWfIVtzsrwuW6UAIkABQJpreManp5E9HQ1lT7IfF57JHlT7u0Bpu_4qO52Wnvom2HF3GzWOA9tKHH-2innMWA3dY8QP1-kQn0BVJwmSWIdTGkB9siEpyNxOvLApg-Npl1lGP96bJgxzMMH40mAo4IPH3L5hbJzg7RoN16uu0SNy-BSOrzOVHSi6UlJIoC7zGh1mB8Q85kYpQKPa2oij0uqckAZghhgkwD4TOelr6SsVD0CFXGk7E-RjigNDQsocBOJDOCJSpOgsBnJoAl1BGroYtSW-m0aIuRrhog56pNQbWpVW26rKF6qc_U7ZBZul7PGrosdbx-_aewk_-FnaItgDS8SEmso8r8Y6HPADbMRSP_Nxqo2uw837fgftPqPfbh6SBofgOLq8Oc
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60HvTiW6xW3YMnZTHJbrbJSUSsVdseSgveQvYlgk2racH6651NNi0KSo4Jc_gmO_PN7DwQOvd4JITmhlDWlIQpHpG0KQxhHB7bu8hj243c7fH2kD0-h88u4Za7ssrKJhaGWo2lzZFfBbGdJQXsg15P3ondGmVvV90KjVW0xij4atsp3rpfBFxuCiVQAmCR4HqrW02vGCIa2p5qPyQ-jzwy_-mXlmTz1_1o4XZa22jT8UV8Uyp4B63obBdtVbsYsDuae6jfLyuBvkAKrqoEsS6X9GDbRILTkXh9mUGkj01qE-VYf7oq2CzH8NFoLMBE4MlbOrVMNt9Hw9bd4LZN3L4EIqnPp0RJL5I2IFEU4h4Tag3ON-RMxkap0NOKqsjjkpoUaIYQJkg1BHzG09JXMhKKHqBaNs70IcIBpaFhMYXoRDIjWKyiOAh8ZgJQoW6yOrqo0Eom5ViMZDEAuYA2AWgTC20yr6NGhWfiTkieLPVZR5cVxsvXfwo7-l_YGVpvD7qdpPPQezpGG0BveFme2EC16cdMnwCFmIrT4j_5BvPNwmc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BkRAcKE9RYBcfOIEMaey4yRGxdHkLIZDgFOIXWi2kFUkl6K9nTOKyi-CAUE5RLCuxHc83nm--AdgIRCylEZYy3lGUaxHTrCMt5QIvl7soEpeNfHomDq740XV0Xdc5LTzb3Yckq5wGp9KUlzt9bXdGiW9OtsQRqiLaFnFAn8dhgjthpAZM7P6-Od4f-Vy1ECWiAgSSaH19YPOjTv43TW94812I9NXydJtw69-5Ipz83R6UclsN38k5fuOjZmGmRqVkt1pGczBm8nlo-ooPpN4A5mH6H_nCBbi4qNhHQ7wjnplITFUYiLjEFZI9yD93g96gIDZzh_PEPNXM27wg2OihJ3FbIv37rHTouViEq-7-5d4BrWs0UMXaoqRaBbFyTpBm6GvZyBg0-JHgKrFaR4HRTMeBUMxmCG2ktGFm0Mm0gVFtrWKp2RI08l5uloGEjEWWJww9IsWt5ImOkzBscxvisjEd3oJNPz1pv5LiSEeiy69jl-LYpW7s0ucWrPkJTOu_skjDxOmRIYJlLdjy8_H2-NPOVr7Ueh0mz39105PDs-NVmEKAJSqC5Bo0yseB-YEgppQ_64X6AhF86b0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognizing+multiple+emotion+from+ambiguous+facial+expressions+on+mobile+platforms&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Lee%2C+Yong-Hwan&rft.au=Han%2C+Wuri&rft.au=Kim%2C+Youngseop&rft.date=2016-05-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=20&rft.issue=5&rft.spage=1811&rft.epage=1819&rft_id=info:doi/10.1007%2Fs00500-015-1680-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_015_1680_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon