Recognizing multiple emotion from ambiguous facial expressions on mobile platforms
Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to display the human’s emotion is through facial expression analysis. This paper proposes a multiple emotion recognition system that can recogniz...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 20; no. 5; pp. 1811 - 1819 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to display the human’s emotion is through facial expression analysis. This paper proposes a multiple emotion recognition system that can recognize combinations of up to a maximum of three different emotions using an active appearance model (AAM), the proposed classification standard, and a
k
-nearest neighbor (
k
-NN) classifier in mobile environments. AAM can take the expression of variations that are calculated by the proposed classification standard according to changes in human expressions in real time. The proposed
k
-NN can classify basic emotions (normal, happy, sad, angry, surprise) as well as more ambiguous emotions by combining the basic emotions in real time, and each recognized emotion that can be subdivided has strength. Whereas most previous methods of emotion recognition recognize various kind of a single emotion, this paper recognizes various emotions with a combination of the five basic emotions. To be easily understood, the recognized result is presented in three ways on a mobile camera screen. The result of the experiment was an average 85 % recognition rate and a 40 % performance showed optimized emotions. The implemented system can be represented by one of the example for augmented reality on displaying combination of real face video and virtual animation with user’s avatar. |
---|---|
AbstractList | Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to display the human’s emotion is through facial expression analysis. This paper proposes a multiple emotion recognition system that can recognize combinations of up to a maximum of three different emotions using an active appearance model (AAM), the proposed classification standard, and a k-nearest neighbor (k-NN) classifier in mobile environments. AAM can take the expression of variations that are calculated by the proposed classification standard according to changes in human expressions in real time. The proposed k-NN can classify basic emotions (normal, happy, sad, angry, surprise) as well as more ambiguous emotions by combining the basic emotions in real time, and each recognized emotion that can be subdivided has strength. Whereas most previous methods of emotion recognition recognize various kind of a single emotion, this paper recognizes various emotions with a combination of the five basic emotions. To be easily understood, the recognized result is presented in three ways on a mobile camera screen. The result of the experiment was an average 85 % recognition rate and a 40 % performance showed optimized emotions. The implemented system can be represented by one of the example for augmented reality on displaying combination of real face video and virtual animation with user’s avatar. Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to display the human’s emotion is through facial expression analysis. This paper proposes a multiple emotion recognition system that can recognize combinations of up to a maximum of three different emotions using an active appearance model (AAM), the proposed classification standard, and a k -nearest neighbor ( k -NN) classifier in mobile environments. AAM can take the expression of variations that are calculated by the proposed classification standard according to changes in human expressions in real time. The proposed k -NN can classify basic emotions (normal, happy, sad, angry, surprise) as well as more ambiguous emotions by combining the basic emotions in real time, and each recognized emotion that can be subdivided has strength. Whereas most previous methods of emotion recognition recognize various kind of a single emotion, this paper recognizes various emotions with a combination of the five basic emotions. To be easily understood, the recognized result is presented in three ways on a mobile camera screen. The result of the experiment was an average 85 % recognition rate and a 40 % performance showed optimized emotions. The implemented system can be represented by one of the example for augmented reality on displaying combination of real face video and virtual animation with user’s avatar. |
Author | Lee, Yong-Hwan Kim, Youngseop Han, Wuri |
Author_xml | – sequence: 1 givenname: Yong-Hwan surname: Lee fullname: Lee, Yong-Hwan organization: Far East University – sequence: 2 givenname: Wuri surname: Han fullname: Han, Wuri organization: Dankook University – sequence: 3 givenname: Youngseop surname: Kim fullname: Kim, Youngseop email: wangcho@dankook.ac.kr organization: Dankook University |
BookMark | eNp1kE1LxDAQQIOs4O7qD_BW8BydNG3aHmXxCxaERc8hzUfJ0jY1acH6681awZOnmcN7M_A2aNW7XiN0TeCWABR3ASAHwEByTFgJeD5Da5JRiousqFY_e4oLltELtAnhCJCSIqdrdDho6Zreftm-SbqpHe3Q6kR3brSuT4x3XSK62jaTm0JihLSiTfTn4HUIEQhJhDpX2-gMrRiN8124ROdGtEFf_c4ten98eNs94_3r08vufo8lJWzESkIpGTCmKMkqk2vNGMlZJiujVA5aUVUCk9QIxmhdm1TolIABLYmSZa3oFt0sdwfvPiYdRn50k-_jS55WpKiA5YxGiiyU9C4Erw0fvO2EnzkBfkrHl3Q8puOndHyOTro4IbJ9o_3f5f-lb9m7dYI |
CitedBy_id | crossref_primary_10_1007_s00500_016_2109_y |
Cites_doi | 10.1088/0954-898X_7_3_002 10.1016/j.patcog.2008.10.010 10.1162/089892902760807177 10.1016/j.image.2004.05.009 10.1049/iet-cvi.2010.0184 10.1007/s10115-007-0114-2 10.1023/A:1007977618277 10.5391/JKIIS.2009.19.6.821 10.1037/a0035246 10.1109/ICCV.2011.6126461 10.1109/IMIS.2014.24 10.1109/TPAMI.2008.52 10.1016/j.neunet.2005.03.004 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2015 Springer-Verlag Berlin Heidelberg 2015. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: Springer-Verlag Berlin Heidelberg 2015. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PQEST PQQKQ PQUKI |
DOI | 10.1007/s00500-015-1680-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 1819 |
ExternalDocumentID | 10_1007_s00500_015_1680_y |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFKRA AGQEE AGRTI AIGIU ARAPS BENPR BGLVJ CCPQU CITATION H13 HCIFZ K7- 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c316t-dc08c6066d3149f5ee661564c9fdd50ed3d806c3fa663bbf2ae210f0ec1dc8bd3 |
IEDL.DBID | 8FG |
ISSN | 1432-7643 |
IngestDate | Thu Oct 10 22:04:21 EDT 2024 Thu Sep 12 19:02:41 EDT 2024 Sat Dec 16 12:09:47 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Nearest neighbor Emotion recognition Multiple facial emotion Active appearance model Ambiguous facial expression |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-dc08c6066d3149f5ee661564c9fdd50ed3d806c3fa663bbf2ae210f0ec1dc8bd3 |
PQID | 2917906563 |
PQPubID | 2043697 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2917906563 crossref_primary_10_1007_s00500_015_1680_y springer_journals_10_1007_s00500_015_1680_y |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Penver, Atick (CR15) 1996; 7 Teijeiro-Mosquera, Alba-Castro (CR17) 2011; 5 CR3 CR6 CR7 Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou, Steinbach, Hand, Steinberg (CR18) 2008; 14 CR9 CR16 Abboud, Davoine, Dang (CR1) 2004; 19 Dailey, Garrison (CR5) 2002; 14 Yoon, Hahn (CR20) 2009; 19 Jung, Kim (CR8) 2006; 13 CR13 Black, Yacoob (CR2) 2004; 25 CR12 CR11 CR10 CR21 Padgett, Cottrell (CR14) 1997; 9 Cheon, Kim (CR4) 2008; 42 Xue, Youwei (CR19) 2006; 3 1680_CR9 MN Dailey (1680_CR5) 2002; 14 B Abboud (1680_CR1) 2004; 19 P Penver (1680_CR15) 1996; 7 1680_CR3 SU Jung (1680_CR8) 2006; 13 1680_CR10 1680_CR21 MJ Black (1680_CR2) 2004; 25 1680_CR11 1680_CR12 C Padgett (1680_CR14) 1997; 9 G Xue (1680_CR19) 2006; 3 1680_CR13 1680_CR7 1680_CR16 1680_CR6 H Yoon (1680_CR20) 2009; 19 Y Cheon (1680_CR4) 2008; 42 L Teijeiro-Mosquera (1680_CR17) 2011; 5 X Wu (1680_CR18) 2008; 14 |
References_xml | – ident: CR21 – volume: 13 start-page: 130 issue: 2 year: 2006 end-page: 137 ident: CR8 article-title: New rectangle feature type selection for real-time facial expression recognition publication-title: J Control Automat Syst Eng contributor: fullname: Kim – volume: 7 start-page: 477 year: 1996 end-page: 500 ident: CR15 article-title: Local feature analysis : a general statistical theory for object representation publication-title: Netw Comput Neural Syst doi: 10.1088/0954-898X_7_3_002 contributor: fullname: Atick – volume: 3 start-page: 16 year: 2006 end-page: 20 ident: CR19 article-title: Facial expression recognition based on the difference of statistical features publication-title: Int Conf Signal Process contributor: fullname: Youwei – ident: CR3 – ident: CR16 – ident: CR12 – ident: CR13 – volume: 9 start-page: 894 year: 1997 end-page: 900 ident: CR14 article-title: Representing face images for emotion classification publication-title: Proc Conf Adv Neural Inf Proc Syst contributor: fullname: Cottrell – ident: CR10 – ident: CR11 – ident: CR9 – volume: 42 start-page: 1340 issue: 7 year: 2008 end-page: 1350 ident: CR4 article-title: A natural facial expression recognition using differential-AAM and k-NNS publication-title: Pattren Recognit doi: 10.1016/j.patcog.2008.10.010 contributor: fullname: Kim – volume: 14 start-page: 1158 year: 2002 end-page: 1173 ident: CR5 article-title: Cottrell, curtis padgett, and ralph adolphs, EMPATH: a neural network that categorizes facial expressions publication-title: J Cogn Neurosc doi: 10.1162/089892902760807177 contributor: fullname: Garrison – ident: CR6 – ident: CR7 – volume: 19 start-page: 723 issue: 8 year: 2004 end-page: 740 ident: CR1 article-title: Facial expression recognition and synthesis based on an appearance model publication-title: Signal Process Image Commun doi: 10.1016/j.image.2004.05.009 contributor: fullname: Dang – volume: 5 start-page: 348 issue: 6 year: 2011 end-page: 357 ident: CR17 article-title: Performance of active appearance model-based pose-robust face recognition publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2010.0184 contributor: fullname: Alba-Castro – volume: 14 start-page: 11 issue: 1 year: 2008 end-page: 37 ident: CR18 article-title: Top 10 algorithms in data mining publication-title: Knowl Inf Syst doi: 10.1007/s10115-007-0114-2 contributor: fullname: Steinberg – volume: 25 start-page: 23 issue: 1 year: 2004 end-page: 48 ident: CR2 article-title: Recognizing facial expressions in image sequences using local parameterized models of image motion publication-title: Int J Comput Vis doi: 10.1023/A:1007977618277 contributor: fullname: Yacoob – volume: 19 start-page: 821 issue: 6 year: 2009 end-page: 827 ident: CR20 article-title: Real-time recognition system of facial expressions using principal component of Gabor-wavelet features publication-title: J korean Inst Intell Syst doi: 10.5391/JKIIS.2009.19.6.821 contributor: fullname: Hahn – volume: 19 start-page: 821 issue: 6 year: 2009 ident: 1680_CR20 publication-title: J korean Inst Intell Syst doi: 10.5391/JKIIS.2009.19.6.821 contributor: fullname: H Yoon – volume: 7 start-page: 477 year: 1996 ident: 1680_CR15 publication-title: Netw Comput Neural Syst doi: 10.1088/0954-898X_7_3_002 contributor: fullname: P Penver – volume: 42 start-page: 1340 issue: 7 year: 2008 ident: 1680_CR4 publication-title: Pattren Recognit doi: 10.1016/j.patcog.2008.10.010 contributor: fullname: Y Cheon – volume: 19 start-page: 723 issue: 8 year: 2004 ident: 1680_CR1 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2004.05.009 contributor: fullname: B Abboud – volume: 9 start-page: 894 year: 1997 ident: 1680_CR14 publication-title: Proc Conf Adv Neural Inf Proc Syst contributor: fullname: C Padgett – ident: 1680_CR16 doi: 10.1037/a0035246 – ident: 1680_CR7 – ident: 1680_CR6 – volume: 25 start-page: 23 issue: 1 year: 2004 ident: 1680_CR2 publication-title: Int J Comput Vis doi: 10.1023/A:1007977618277 contributor: fullname: MJ Black – volume: 5 start-page: 348 issue: 6 year: 2011 ident: 1680_CR17 publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2010.0184 contributor: fullname: L Teijeiro-Mosquera – ident: 1680_CR13 doi: 10.1109/ICCV.2011.6126461 – volume: 14 start-page: 11 issue: 1 year: 2008 ident: 1680_CR18 publication-title: Knowl Inf Syst contributor: fullname: X Wu – ident: 1680_CR9 doi: 10.1109/IMIS.2014.24 – volume: 3 start-page: 16 year: 2006 ident: 1680_CR19 publication-title: Int Conf Signal Process contributor: fullname: G Xue – ident: 1680_CR21 doi: 10.1109/TPAMI.2008.52 – ident: 1680_CR12 – ident: 1680_CR3 – ident: 1680_CR11 – volume: 13 start-page: 130 issue: 2 year: 2006 ident: 1680_CR8 publication-title: J Control Automat Syst Eng contributor: fullname: SU Jung – volume: 14 start-page: 1158 year: 2002 ident: 1680_CR5 publication-title: J Cogn Neurosc doi: 10.1162/089892902760807177 contributor: fullname: MN Dailey – ident: 1680_CR10 doi: 10.1016/j.neunet.2005.03.004 |
SSID | ssj0021753 |
Score | 2.147433 |
Snippet | Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1811 |
SubjectTerms | Algorithms Animation Artificial Intelligence Augmented reality Avatars Classification Communications systems Computational Intelligence Control Discriminant analysis Emotion recognition Emotions Engineering Focus Mathematical Logic and Foundations Mechatronics Real time Robotics |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XODAYIAYL-XACZSpa9KsPSLEQyA4ICaNU9W8EBrrJtpJbL8eZ203noepp6pRpMZO_Dm2PwOceCKU0ghLGW8ryrUIadKWlnKBj6tdFJGrRr5_EDcdftsNukvgz64u0l6zikhOD-pZrZtjKnE5VAFtidCj42VYLetOV8-vn-8uZ25WyT2JQACxIxrcKpb51yTfrdEcYv6Iik6NzVWtKADMphyFLsek1xzlsqkmvxkcF_iPTdgosSc5L5RlC5ZMWoda1deBlNu8DutfSAq34fGxyDGa4Bup8g-JKdr_EFeeQpK-fH0ZDUYZsYm7gifmo8yvTTOCg_oDiYcPGb4lucPI2Q50ri6fLm5o2YmBKtYSOdXKC5VzdTRDj8oGxqBZDwRXkdU68IxmOvSEYjZBACOl9RODrqT1jGppFUrNdmElHaRmD4jPWGB5xNDvUdxKHukw8v0Wtz4qh2nzBpxWEomHBeFGPKNWnq5djGsXu7WLxw04rGQWl3svi_3IsY4hTmUNOKtkMP_872T7C40-gDXETqLIfTyElfx9ZI4Qn-TyuFTIT-nJ3QU priority: 102 providerName: Springer Nature |
Title | Recognizing multiple emotion from ambiguous facial expressions on mobile platforms |
URI | https://link.springer.com/article/10.1007/s00500-015-1680-y https://www.proquest.com/docview/2917906563 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFB60vXhxF6u1zMGTMphkJpPkJFW6oFikWKinkNlEsIu2Beuv900yaVFQcggk4R3eZOZ931sROvd4LITmhlAWScIUj0kWCUMYh8vWLvLEViM_9Hh3wO6G4dA53GYurbI8E_ODWk2k9ZFfBYntJQXog15P34mdGmWjq26Exiaq-kEUWfIVtzsrwuW6UAIkABQJpreManp5E9HQ1lT7IfF57JHlT7u0Bpu_4qO52Wnvom2HF3GzWOA9tKHH-2innMWA3dY8QP1-kQn0BVJwmSWIdTGkB9siEpyNxOvLApg-Npl1lGP96bJgxzMMH40mAo4IPH3L5hbJzg7RoN16uu0SNy-BSOrzOVHSi6UlJIoC7zGh1mB8Q85kYpQKPa2oij0uqckAZghhgkwD4TOelr6SsVD0CFXGk7E-RjigNDQsocBOJDOCJSpOgsBnJoAl1BGroYtSW-m0aIuRrhog56pNQbWpVW26rKF6qc_U7ZBZul7PGrosdbx-_aewk_-FnaItgDS8SEmso8r8Y6HPADbMRSP_Nxqo2uw837fgftPqPfbh6SBofgOLq8Oc |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60HvTiW6xW3YMnZTHJbrbJSUSsVdseSgveQvYlgk2racH6651NNi0KSo4Jc_gmO_PN7DwQOvd4JITmhlDWlIQpHpG0KQxhHB7bu8hj243c7fH2kD0-h88u4Za7ssrKJhaGWo2lzZFfBbGdJQXsg15P3ondGmVvV90KjVW0xij4atsp3rpfBFxuCiVQAmCR4HqrW02vGCIa2p5qPyQ-jzwy_-mXlmTz1_1o4XZa22jT8UV8Uyp4B63obBdtVbsYsDuae6jfLyuBvkAKrqoEsS6X9GDbRILTkXh9mUGkj01qE-VYf7oq2CzH8NFoLMBE4MlbOrVMNt9Hw9bd4LZN3L4EIqnPp0RJL5I2IFEU4h4Tag3ON-RMxkap0NOKqsjjkpoUaIYQJkg1BHzG09JXMhKKHqBaNs70IcIBpaFhMYXoRDIjWKyiOAh8ZgJQoW6yOrqo0Eom5ViMZDEAuYA2AWgTC20yr6NGhWfiTkieLPVZR5cVxsvXfwo7-l_YGVpvD7qdpPPQezpGG0BveFme2EC16cdMnwCFmIrT4j_5BvPNwmc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BkRAcKE9RYBcfOIEMaey4yRGxdHkLIZDgFOIXWi2kFUkl6K9nTOKyi-CAUE5RLCuxHc83nm--AdgIRCylEZYy3lGUaxHTrCMt5QIvl7soEpeNfHomDq740XV0Xdc5LTzb3Yckq5wGp9KUlzt9bXdGiW9OtsQRqiLaFnFAn8dhgjthpAZM7P6-Od4f-Vy1ECWiAgSSaH19YPOjTv43TW94812I9NXydJtw69-5Ipz83R6UclsN38k5fuOjZmGmRqVkt1pGczBm8nlo-ooPpN4A5mH6H_nCBbi4qNhHQ7wjnplITFUYiLjEFZI9yD93g96gIDZzh_PEPNXM27wg2OihJ3FbIv37rHTouViEq-7-5d4BrWs0UMXaoqRaBbFyTpBm6GvZyBg0-JHgKrFaR4HRTMeBUMxmCG2ktGFm0Mm0gVFtrWKp2RI08l5uloGEjEWWJww9IsWt5ImOkzBscxvisjEd3oJNPz1pv5LiSEeiy69jl-LYpW7s0ucWrPkJTOu_skjDxOmRIYJlLdjy8_H2-NPOVr7Ueh0mz39105PDs-NVmEKAJSqC5Bo0yseB-YEgppQ_64X6AhF86b0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognizing+multiple+emotion+from+ambiguous+facial+expressions+on+mobile+platforms&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Lee%2C+Yong-Hwan&rft.au=Han%2C+Wuri&rft.au=Kim%2C+Youngseop&rft.date=2016-05-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=20&rft.issue=5&rft.spage=1811&rft.epage=1819&rft_id=info:doi/10.1007%2Fs00500-015-1680-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_015_1680_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |